氢化物超导体临界转变温度的机器学习模型 |
赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛 |
Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors |
ZHAO Jinbin, WANG Jiantao, HE Dongchang, LI Junlin, SUN Yan, CHEN Xing-Qiu, LIU Peitao |
图2 单次训练下临界温度(Tc)的模型测试误差与特征数量的关系,及10次独立训练下的平均模型测试集误差与训练集占比的关系 |
Fig.2 Model test errors as a function of number of features for one single training (a) and averaged model test errors of ten independent trainings as a function of training set ratio (b) (The shadow-filled areas show the standard deviation. MAE—mean absolute error, RMSE—root mean square error) |
![]() |