机器学习型分子力场在金属材料相变与变形领域的研究进展 |
李志尚, 赵龙, 宗洪祥, 丁向东 |
Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations |
LI Zhishang, ZHAO Long, ZONG Hongxiang, DING Xiangdong |
图5 MLFFs在传统金属材料准静态加载过程中位错动力学研究中的应用,包括:bcc-Fe的螺位错核心结构,bcc-Fe螺位错的扭结运动模式,1/2<110>螺位错与预先存在位错的Ni/Ni3Al半共格界面相互作用的应力与反应路径的依赖关系,及第一和第二相互作用阶段能量势垒随外部应力的变化[ |
Fig.5 Application of MLFFs in dislocation dynamics of conventional metallic materials under quasi-static loading condition (a) screw dislocation core of bcc-Fe (τ—shear stress, a—Peierls valleys spacing, b—Burgers vector modulus)[ (b) atoms at the dislocation core during a simulation snapshot, evidencing dislocation glide by kink-pair mechanism[ (c) stress-dependent reaction path of the interaction between an incoming 1/2<110> screw dislocation and the semi-coherent Ni/Ni3Al interface with a preexisting interfacial dislocation[ (d) variation of energy barrier as a function of the external stress for the first and second interacting stages[ |
![]() |