机器学习型分子力场在金属材料相变与变形领域的研究进展
李志尚, 赵龙, 宗洪祥, 丁向东

Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations
LI Zhishang, ZHAO Long, ZONG Hongxiang, DING Xiangdong
图2 DeepMD模型的示意图:下方的框架是其中深度神经网络的放大图;原子i所有相邻原子之间的距离矩阵{ Rij },即环境矩阵,首先转换为描述矩阵{ Dij },再传入到隐藏层计算原子能量Ei[66]
Fig.2 Schematic of the DeepMD model. The frame in the box is an enlargement of a deep neural network (DNN). The relative positions of all neighbors with respect to atom i, i.e., { Rij }, is first converted to descriptor matrix { Dij }, then passed to the hidden layers to compute Ei[66] (E—total energy)