机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发
|
杨累, 赵帆, 姜磊, 谢建新
|
Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning
|
YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin
|
|
表1 MLDS预测结果和实验验证结果的比较
|
Table 1 Comparisons of predicted results by MLDS and experimental results
|
|
Steel | Chemical composition (mass fraction / %) | Heat treatment parameter | Mechanical property |
---|
| C | Si | Mn | Cr | Ni | Mo | V | Nb | TQ | tQ | TT | tT | Rm | A | Rp0.2 | Z | | | | | | | | | | oC | min | oC | min | MPa | % | MPa | % | 1# predicted | 0.50 | 1.63 | 0.73 | 1.20 | 0.21 | 0.27 | 0.14 | 0.020 | 907 | 31 | 423 | 89 | 2075 | 12.0 | - | - | 1# actual | 0.55 | 1.76 | 0.70 | 1.10 | 0.21 | 0.20 | 0.14 | 0.016 | 910 | 30 | 420 | 90 | 2046 | 11.9 | 1644 | 38.0 | 2# predicted | 0.57 | 1.70 | 0.70 | 1.17 | 0.18 | 0.22 | 0.34 | 0.010 | 914 | 33 | 420 | 93 | 2096 | 10.9 | - | - | 2# actual | 0.54 | 1.75 | 0.64 | 1.18 | 0.20 | 0.20 | 0.37 | 0.003 | 910 | 30 | 420 | 90 | 2044 | 10.0 | 1695 | 33.9 |
|
|
|