机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发
杨累, 赵帆, 姜磊, 谢建新

Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning
YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin
表1 MLDS预测结果和实验验证结果的比较
Table 1 Comparisons of predicted results by MLDS and experimental results
SteelChemical composition (mass fraction / %)Heat treatment parameterMechanical property
CSiMnCrNiMoVNbTQtQTTtTRmARp0.2Z
oCminoCminMPa%MPa%
1# predicted0.501.630.731.200.210.270.140.0209073142389207512.0--
1# actual0.551.760.701.100.210.200.140.0169103042090204611.9164438.0
2# predicted0.571.700.701.170.180.220.340.0109143342093209610.9--
2# actual0.541.750.641.180.200.200.370.0039103042090204410.0169533.9