基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化
赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤

Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling
ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun
表2 回归模型评估结果
Table 2 Evaluation results of the regression models
RoundEVSMAE / HVMSE / HVRMSE / HVMedAE / HV
First round-0.1014.60301.8017.310.09
The second round of mME-0.1110.06138.1011.750.04
The second round of mBO0.315.5738.566.210.01
The third round of mME0.167.7994.599.730.03
The third round of mBO0.502.8820.134.49< 0.01
The third round of mBOe-0.064.8542.416.510.01