基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化
|
赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤
|
Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling
|
ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun
|
|
表1 22个重要性质特征描述符的索引及对应含义
|
Table 1 Features indexes and implication of 22 important property features
|
|
Feature index | Feature name | Feature index | Feature name |
---|
F_0 | Ave: electron_affinity | F_1 | Ave: hhi_r | F_2 | Var: covalent_radius | F_3 | Sum: atomic_weight | F_4 | Var: gs_est_fcc_latcnt | F_5 | Var: atomic_radius | F_6 | Modulus mismatch | F_7 | Var: atomic_radius_rahm | F_8 | Shear modulus | F_9 | Lattice distortion energy | F_10 | Mixing enthalpy | F_11 | Parameter omiga | F_12 | Ave: dipole_polarizability | F_13 | Sum: c6_gb | F_14 | Cohesive energy | F_15 | Var: molar_volume | F_16 | Var: first_ion_en | F_17 | Ave: covalent_radius_pykko_triple | F_18 | Ave: boiling_point | F_19 | Sum: heat_of_formation | F_20 | Configurational entropy | F_21 | Ave: electron_negativity |
|
|
|