增材制造可降解金属医用植入物
郑玉峰, 夏丹丹, 谌雨农, 刘云松, 徐钰倩, 温鹏, 田耘, 赖毓霄

Additively Manufactured Biodegrabable Metal Implants
ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao
图7 L-PBF成形块体医用金属材料的拉伸性能[59,112,115,116,119,123,125,127~136],L-PBF成形多孔可降解金属的压缩屈服强度与弹性模量之间的关系[58,78~81,118,121,142],L-PBF成形可降解金属的降解速率[78~80,118,119,121,128,137,144,145],及MG63及MC3T3-E1细胞在L-PBF成形可降解金属浸提液中的细胞成活率(未标出部分为MG63细胞的结果)[58,78~81,118,121,128,137,151,152]
Fig.7 Tensile properties of bulk medical metallic materials manufactured by L-PBF (a)[59,112,115,116,119,123,125,127-136], elastic modulus-compressive yield strength relationship of biodegradable scaffolds manufactured by L-PBF (b)[58,78-81,118,121,142], biodegradation rates of L-PBF biodegradable metals (c)[78-80,118,119,121,128,137,144,145], and cell viability of MG63 and MC3T3-E1 cell lines in L-PBF biodegradable metals' extractions (The unmarked parts are the cell viabilities of MG63) (d)[58,78-81,118,121,128,137,151,152]