钢的高性能化理论与技术进展
|
董瀚,廉心桐,胡春东,陆恒昌,彭伟,赵洪山,徐德祥
|
High Performance Steels: the Scenario of Theoryand Technology
|
Han DONG,Xintong LIAN,Chundong HU,Hengchang LU,Wei PENG,Hongshan ZHAO,Dexiang XU
|
|
表3 钢中不同氢陷阱的结合能(Ea)[51,54] |
Table 3 Various activation energies (Ea) of hydrogen trap in steels[51,54] |
|
Type of trap | Trap | Material | Ea | Heating rate |
---|
| | | kJ·mol-1 | ℃·min-1 | Reversible hydrogen trap | Dislocation | Pure iron | 26.9 | 3 | | Grain boundary | Pure iron | 17.2 | 3 | | F/Fe3C phase boundary | Medium carbon steel | 18.4 | 2.6 | | TiC (coherent) | Low carbon steel | 46~59 | 1.7 | | NbC (coherent) | Tempered martensite steel | 28 | 1.7 | | NbC (coherent) | C080 low carbon steel | 39~48 | 3.33~20 | | Microvoid | Pure iron | 35.2 | 3 | Irreversible hydrogen trap | Grain boundary | Deformed iron | 59.9 | 3 | | Retained austenite | Double phase (DP) steel | 55 | 4 | | AlN | - | 64 | - | | NbC (incoherent) | C080 low carbon steel | 63~68 | 3.33~20 | | TiC (incoherent) | Medium carbon steel | 86 | 3 | | MnS | Low alloy steel | 72.3 | 3 | | Fe3C | Medium carbon steel | 84 | 4 | | TiC (incoherent) | 0.025C-0.09Ti | 138~149 | 3.33~20 |
|
|
|