综述:钢中亚稳奥氏体组织与疲劳性能关系
徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充

Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels
Wei XU,Minghao HUANG,Jinliang WANG,Chunguang SHEN,Tianyu ZHANG,Chenchong WANG
表1 奥氏体组织特征对疲劳性能影响汇总[29,33,40,42,43,44,45,46,47,48,49,54,56,57,58,59,60,61,62,63,65,67]
Table 1 Summary of austenite characteristics on fatigue properties[29,33,40,42,43,44,45,46,47,48,49,54,56,57,58,59,60,61,62,63,65,67]
Fatigue featureLow cycle fatigueHigh cycle fatigue
of austenite

Volume fraction of austenite

Positive correlation[29,33,40,42,44]

(1) austenite has advantages on plasticity[42,44];

(2) the compressive stress and shear strain produced by martensitic transformation can reduce the plastic strain[33];

(3) energy absorption during TRIP process[40,44];

(4) crack closure caused by TRIP effect[40,44];

(5) resistance of stress softening during cyclic loading[29,42,44];

(6) the crack tip passivated by martensitic transformation[42]

Negative correlation[45,46,48]

(1) martensite transformation is easy to be used as the source of crack initiation during the TRIP process[45];

(2) martensite formed by TRIP effect is easy to be used as the path of crack growth[48];

(3) remarkable cyclic hardening caused by martensitic transformation[46]

Inconclusive[47]

There is a competitive relationship between the effect of inhibiting crack growth and inducing crack initiation

Positive correlation[46,54,56,57,58,59,60,61]

(1) austenite has more slip systems, which can slow down dislocation entanglement and reduce local stress concentration, thus delaying the crack initiation[46,56,57,58,59,60];

(2) DARA effect[61];

(3) the existence of austenite would resist the dislocation moving[46];

(4) energy absorption during TRIP process[54,57];

(5) strengthening by TRIP effect[58];

(6) the higher amount of retained austenite brings more obstacles for fatigue crack growth[56,57];

(7) crack closure caused by volume expansion during the DIMT process[46,56]

Negative correlation[48,62,63]

Showed negative correlation in TRIP steel and martensitic precipitation hardening stainless steel, but lack of theoretical explanation

Stability of austenite

Positive correlation[47,49]

(1) the film-like retained austenite is beneficial to prevent crack growth[49];

(2) it can avoid the cracks caused by the stress-strain mismatch between the austenite and matrix due to its high hardness[49];

(3) the film-like austenite can also bring more RICC effect[49], and prevent the crack initiation caused by elastic mismatch between the new formed and previous martensite[47];

(4) the unstable austenite exhibits significant cycle hardening during cycle loading, which is not conducive to the stability of cycle stress[49]

Negative correlation[54]

The block retained austenite performs good compatibility deformation ability

Positive correlation[43,49,59,60,65]

(1) the highly stable austenite transformed to martensite after crack initiation which is benefit to fatigue properties[65];

(2) film-like austenite brings more RICC effect[49];

(3) production of film-like austenite would refine the microstructure[60];

(4) the calculated results of FGA show that the blocky-like austenite plays negative role on crack initiation[59];

(5) the large-size austenite is easy to transform into brittle martensite under elastic deformation, which is unfavorable to fatigue stress[43]

Negative correlation[67]

The unstable austenite performs great compatible deformation ability and plasticity