镍基单晶高温合金的研发进展
张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪

Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys
Jian ZHANG,Li WANG,Dong WANG,Guang XIE,Yuzhang LU,Jian SHEN,Langhong LOU
表2 单晶高温合金中温蠕变机制[33,34,36,37,38]
Table 2 Creep mechanisms at intermediate temperature[33,34,36,37,38]
AlloysTest conditionCreep mechanisms at intermediate temperatureRef.

CMSX-4

1st generation SX alloy

750~850 ℃/450~750 MPa;

760 ℃/600, 700, 850 MPa

Different a/2<110> dislocations react at the interfaces of γ/γ'

a/2[011]+a/2[011]+a/2[1ˉ01]+a/2[1ˉ01]→a/3[112]+a/3[1ˉ12]+a/6[1ˉ12]+a/6[1ˉ12]a/3[1ˉ12] and a/6[1ˉ12] partial dislocations cut into γ' and leave a combination of SISF, SESF and APB

[33,34,38]

AM1, MC-NG, MC534, CMSX-10M, Rene N6

760 ℃/

840 MPa

a/2<110> dislocation cuts into γ' and results in a APB

[36]

SRR99

1st generation SX alloy

760 ℃/600, 780 MPa

760 ℃/600, 700, 850 MPa

a/2<110> dislocations dissociate at the interface:

a/2[1ˉ01]→a/3[1ˉ1ˉ2]+a/6[1ˉ21ˉ]

a/3<112> partial dislocations cut into γ' and leave a SISF or SESF a/6<112> partial dislocation would be left at the γ/γ' interfaces

[37,38]