SiCp/Al复合材料热轧过程的有限元模拟*

1 沈阳理工大学机械工程学院, 沈阳 110159
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016

FINITE ELEMENT SIMULATION OF HOT ROLLING PROCESS FOR SiCp/Al COMPOSITES
Li ZHOU1,2, Changzhou WANG1, Xingxing ZHANG2, Bolü XIAO2, Zongyi MA2
1 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016
Correspondent: MA Zongyi, professor, Tel: (024)83978908, E-mail:zyma@imr.ac.cn
Abstract

In this work, the hot rolling process of SiCp/2009Al composites is simulated using the fully coupled thermal-stress analysis in Abaqus/Explicit. By the investigation of formation process for rolling along with different fields of temperature, strain rate, strain and stress and their evolutionary history, the hot rolling mechanisms under complicated stress states is achieved. The results show that the maximum principal stress changes from compressive stress to tensile stress at the stage of rolling entrance and a reverse trend replaces it at the exit, and that the compressive stress is dominant in the deformation zone at the steady rolling stage. The temperature drop effect due to heat transfer is far greater than the temperature rise effect due to friction on the plate surface while the temperature rise is embodied in the center due to plastic deformation. Besides, the effect of strain rate on flow stress plays a leading role at the entrance and exit stage, and the flow stress on the plate surface in the deformation region is mainly determined by strain and temperature except the stick zone which is controlled by strain rate, however, the center flow stress in deformation is mainly affected by temperature.

Keyword: rolling; rheological behavior; composites; finite element

1 有限元方法
1.1 模型的建立

 Figure Option Fig.1 Finite element model for hot rolling图1 轧制有限元模型

 (1) $θ(i+1)N=θ(i)N+Δt(i+1)θ˙(i)N$

 (2) $θ˙(i)N=(CNJ)-1(P(i)J-F(i)J)$

 (3) $u¨iN=(MNJ)-1(P(i)J-F(i)J)$

 (4) $u˙i+12N=u˙i-12N+?t(i+1)+?t(i)2u¨(i)N$

 (5) $u(i+1)N=uiN+?t(i+1)u˙i+12N$

1.2 边界条件

 (6) $Uy=0$

 (7) $-Kplate?T?y=0(t>0)$

 (8) $q=h(TB-TA)$

 (9) $τcrit=μP$

 (10) $τeq=τ12+τ22$

1.3 材料本构模型

 (11) $Z=Asinh(ασ)n=ε˙exp(Q/(RT))$

 (12) $σ=1αlnZA1/n+ZA2/n+11/2$

 Figure Option Fig.2 Initial microstructure of SiCp/2009Al composites图2 SiCp/2009Al 复合材料的显微结构

Table 1 Thermo-physical properties of SiCp/2009Al composites[22,23] 表1 SiCp/2009Al复合材料热物理性能[22,23]
2 结果和讨论
2.1 稳定极限值的控制

 (13) $Δt≤min(Lelcd)$

 (14) $cd=ρλ+2η$

 (15) $d=S?max(1Lelλ+2ηρ)$

 Figure Option Fig.3 Changes of rolling force with time under different mesh sizes d图3 不同网格尺寸下轧制力随时间变化曲线

 Figure Option Fig.4 Changes of rolling force with mesh size图4 轧制力随网格尺寸变化曲线

 Figure Option Fig.5 Path selected in the strip图5 选取路径图

 Figure Option Fig.6 Effect of mass scaling factor w on equivalent stress图6 质量缩放因子对等效应力的影响

2.2 轧制成型过程

 Figure Option Fig.7 Absolute maximum pricinpal stress distributions during rolling for SiCp/2009Al(a) initial contact stage(b) steady stage(c) thrown-out stage图7 SiCp/2009Al轧制成型过程中绝对最大主应力分布

 Figure Option Fig.8 Temperature field distribution (a) and changes of surface and center temperatures with time (b)图8 轧制温度场及表面和中心温度随时间变化曲线

2.4 轧制应变和应变率分布

 (16) $ε?=23lnH0H1$

 (17) $ε˙?=32vrε?R(H0-H1)$

 Figure Option Fig.9 Strain field distribution (a) and changes of surface and center equivalent strains with time (b)图9 轧制应变场及表面和中心应变随时间变化曲线

 Figure Option Fig.10 Velocity field distribution图10 轧制速度场

 Figure Option Fig.11 Changes of equivalent strain rate with time图11 等效应变率随时间变化曲线

2.5 轧制应力场分布

 Figure Option Fig.12 Equivalent stress field distribution (a) and changes of surface and center equivalent stresses with time (A—strain rate of being dominant, B—temperature drop of being dominant, C—temperature rise of being dominant, D—interaction effect) (b)图12 等效应力场及表面和中心应力随时间变化曲线

3 结论

(1) SiCp/Al复合材料的轧制成型过程可以分为3个阶段: 咬入阶段、稳态阶段和甩出阶段. 轧板咬入端的最大主应力变化规律是由压应力向拉应力转变, 而轧板甩出端相反. 在轧制稳定阶段, 变形区的最大主应力以压应力为主, 且形成一条与水平线近似45°斜角的高压带, 变形区前后端则以拉应力为主.

(2) 在轧制变形区, 轧板表面的热传递温降效应远大于摩擦温升效应, 而轧板中心温度主要由塑性变形温升效应控制. 最终, 表面和中心温度趋于一致, 轧板整体表现为温降特征.

(3) 在轧制入口和出口处, 应变率对流动应力的影响占主导作用. 在轧制变形区, 轧板表面的流变应力主要由应变和温度决定, 但表面黏着区的流动应力由应变率控制. 轧板中心的流动应力在变形区主要受温度影响.

 [1] Selvam J D R, Smart D S R, Dinaharan I. Mater Des, 2013;49: 28 [本文引用:1] [2] Mortensen A, Llorca J. Annu Rev Mater Res, 2010;40: 243 [本文引用:1] [JCR: 15.629] [3] Wang S S, Mao C H, Yang J, Liang Q S, Sun B. Chin J Rare Met, 2012;36: 167(汪山山, 毛昌辉, 杨 剑, 梁秋实, 孙 波. 稀有金属, 2012;36: 167) [本文引用:1] [4] Hassani A, Bagherpour E, Qods F. J Alloys Compd, 2014;591: 132 [本文引用:1] [JCR: 2.726] [5] Balasubramanian I, Maheswaran R. Mater Des, 2015;65: 511 [本文引用:1] [JCR: 0.734] [6] Liu J W, Zheng Z X, Wang J M, Wu Y C, Tang W M, Lu J. J Alloys Compd, 2008;465: 239 [本文引用:2] [JCR: 2.726] [7] El-Sabbagh A, Solimam M, Taha M, Palkowski H. J Mater Process Technol, 2012;212: 497 [本文引用:3] [8] Goswami R K, Sikand R, Dhar A, Grover O P, Jindal U C, Gupta A K. Mater Sci Technol, 1999;15: 443 [本文引用:1] [CJCR: 0.193] [9] El-Sabbagh A, ?Soliman M, ?Taha?M, ?Palkowski H. J Mater Process Technol, 2013;213: 1669 [本文引用:1] [10] Euh K, Kang S B. Mater Sci Eng, 2005;A395: 47 [本文引用:1] [JCR: 0.5] [11] Liu X H. Acta Metall Sin, 2010;46: 1025(刘相华. 金属学报, 2010;46: 1025) [本文引用:2] [JCR: 0.548] [CJCR: 0.835] [12] Shahani A R, Setayeshi S, Nodamaie S A, Asadi M A, Rezaie S. J Mater Process Technol, 2009;209: 1920 [本文引用:3] [13] Duan X J, Sheppard T. J Mater Process Technol, 2004;150: 100 [本文引用:1] [14] Yu H L, Jiao Z J, Liu X H, Zhao X M. J Mater Metall, 2005;4(1): 70(喻海良, 矫志杰, 刘相华, 赵宪明. 材料与冶金学报, 2005;4(1): 70) [本文引用:1] [CJCR: 0.246] [15] Arif A F M, Khan O, Sheikh A K. J Mater Process Technol, 2004;147: 255 [本文引用:1] [16] Kan Y, Liu Z G, Zhang S H, Zhang L W, Cheng M, Song H W. Chin J Rare Met, 2015;39(4): 289(阚 盈, 刘振刚, 张士宏, 张立文, 程 明, 宋鸿武. 稀有金属, 2015;39(4): 289) [本文引用:1] [17] Shao J C, Xiao B L, Wang Q Z, Ma Z Y, Liu Y, Yang K. Mater Sci Eng, 2010;A527: 7865 [本文引用:1] [JCR: 0.5] [18] Xu H, Zhang X, Li H W, Li S, Wang C S, Wang Y L, Zhang B D. J Wuhan Univ Technol—Mater Sci Ed, 2012;27: 443 [本文引用:1] [19] Serajzadeh S, Karimi T A, Nejati M, Izadi J, Fattahi M. J Mater Process Technol, 2002;128: 88 [本文引用:1] [20] Yaakoubi M, Kchaou M, Dammak F. Comp Mater Sci, 2013;68: 297 [本文引用:3] [JCR: 1.879] [21] Chen J, Chandrashekhara K, Mahimkar C, Lekakh S N, Richards V L. J Mater Process Technol, 2011;211: 245 [本文引用:1] [22] Zhu Y, Kishawy H A. Int J Mach Tools Manuf, 2005;45: 389 [本文引用:1] [23] Tan Y Q, Yang D M, Sheng Y. J Eur Ceram Soc, 2009;29: 1029 [本文引用:1] [JCR: 2.307] [24] Ducobu F, Rivière-Lorphèvre E, Filippi E. Simul Modell Pract Theory, 2015;53: 1 [本文引用:1] [JCR: 1.05] [25] Cocchetti G, Pagani M, Perego U. Comp Struct, 2013;127: 39 [本文引用:1] [JCR: 0.353]