Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (12): 1829-1844    DOI: 10.11900/0412.1961.2024.00075
Research paper Current Issue | Archive | Adv Search |
Microstructures and Mechanical Properties of GH4169 Superalloy Manufactured by Selective Laser Melting
SUN Yongfei1,2, XIANG Chao2(), ZHANG Tao2, WU Wenwei1,2, ZOU Zhihang2, LIU Jinpeng2, SUN Guifang2,3(), PU Jibin4, HAN En-Hou2,5
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
2 Institute of Corrosion Science and Technology, Guangzhou 510530, China
3 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
4 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
5 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Cite this article: 

SUN Yongfei, XIANG Chao, ZHANG Tao, WU Wenwei, ZOU Zhihang, LIU Jinpeng, SUN Guifang, PU Jibin, HAN En-Hou. Microstructures and Mechanical Properties of GH4169 Superalloy Manufactured by Selective Laser Melting. Acta Metall Sin, 2025, 61(12): 1829-1844.

Download:  HTML  PDF(9010KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH4169 materials are widely used in aerospace, nuclear power, petrochemical, and other industries. However, conventional processing methods fail to meet the demands of high-performance and rapid manufacturing for complex structural parts. Therefore, selective laser melting (SLM) has been adopted as a new rapid manufacturing technology to address these demands. The high-temperature gradient and rapid cooling rate generated during SLM result in a considerably different microstructure in the GH4169 alloy compared with those produced via conventional melting and forging methods. Consequently, heat treatment is an essential post-processing step to enhance the precipitation strengthening of the GH4169 superalloy. Thus, it is critical to examine the microstructure and mechanical properties of the SLM-formed GH4169 alloy after heat treatment. This study focuses on fabricating the GH4169 alloy using SLM technology and investigates the microstructure and mechanical properties of the as-built, directly aged, and solution-aged GH4169 alloy specimens. Results reveal that the as-built structures primarily comprise a γ matrix and Laves phase. After direct aging, the γ′/γ″ phase precipitates within the matrix. After solution aging, the Laves phase completely dissolves. Moreover, the δ phase precipitates with a size of < 1 μm become abundant and uniformly distributed within grains and grain boundaries. Simultaneously, the γ′/γ″ phase precipitate within the matrix, resulting in a more homogeneous distribution. The microhardness, tensile strength, and yield strength at room temperature (25 oC) of the SLM GH4169 alloy are 311 HV, 961 MPa, and 649 MPa, respectively. Heat treatment substantially improves the hardness and strength of the material. In the solution-aged state, the microhardness reaches 518 HV, with a tensile strength of 1393 MPa and a yield strength of 1233 MPa at room temperature. Notably, these static mechanical properties surpass those of the corresponding forged materials. The tensile properties at 550, 650, and 750 oC indicate that the elevated strength of the heat-treated samples at 650 oC complies with relevant forging standards. Owing to the substantial temperature gradient and rapid cooling rate during the SLM forming process, the GH4169 sample exhibits a refined cellular and columnar dendritic structure, small grain size, and high dislocation density. Subsequent heat treatment induces γ′/γ″ phase precipitation, enhancing the mechanical properties of the GH4169 alloy through fine crystal strengthening, dislocation strengthening, and precipitation strengthening.

Key words:  selective laser melting      GH4169      heat treatment      microstructure      mechanical property     
Received:  12 March 2024     
ZTFLH:  TG146.1  
Fund: Youth Innovation Fund of Institute of Corrosion Science and Technology(E1551601);Opening Project of State Key Laboratory of Advanced Marine Materials(2024Z02)
Corresponding Authors:  XIANG Chao, Tel: (020)22309456, E-mail: cxiang@icost.ac.cn; SUN Guifang, professor, Tel: (025)52090501, E-mail: gfsun@seu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00075     OR     https://www.ams.org.cn/EN/Y2025/V61/I12/1829

Fig.1  Morphology (a) and particle size distribution (b) of GH4169 superalloy powders (D10, D50, and D90 are the particle sizes of the powder at 10%, 50%, and 90% cumulative distribution, respectively)
Fig.2  Dimensions of tensile test specimens (unit: mm)
StateSolutionAging
ABNoneNone
DANone720 oC for 8 h, furnace
cooling to 620 oC;
620 oC for 8 h, air cooling
SA980 oC for 1 h,720 oC for 8 h, furnace
air coolingcooling to 620 oC;
620 oC for 8 h, air cooling
Table 1  Parameters of heat treatment process
Fig.3  XRD spectra of GH4169 superalloy specimens in AB, DA, and SA states (Inset is a partially magnified spectra)
IntergranularABDASA
spacing
(111)0.207970.207880.20765
(200)0.180240.180020.17994
(220)0.127290.127280.12711
(311)0.108560.108540.10840
(222)0.103880.103690.10375
Table 2  Intergranular spacings of austenite in AB, DA, and SA states
Fig.4  OM images of GH4169 superalloy specimens in different states at the XOY surface (a-c) and XOZ surface (d-f)
(a, d) AB state (b, e) DA state (c, f) SA state
Fig.5  Low (a-c) and high (d-f) magnified SEM images of GH4169 superalloy specimens in different states
(a, d) AB state (b, e) DA state (c, f) SA state
Fig.6  EPMA surface mappings of GH4169 superalloy specimens in different states
(a) AB state (b) DA state (c) SA state
Fig.7  Inverse pole figure (IPF) maps of GH4169 superalloy specimens in AB (a, d), DA (b, e), and SA (c, f) states (BD—building direction)
(a-c) XOY surface (d-f) XOZ surface
SurfaceStateTransverse size / μmLongitudinal size / μmAspect ratio
XOYAB10.078.351.21
DA11.879.341.27
SA11.069.751.13
XOZAB9.6916.660.58
DA9.4016.010.59
SA11.0319.710.56
Table 3  Grain size (intercept lengths) of GH4169 superalloy specimens in AB, DA, and SA states
StateYield strength / MPaTensile strength / MPaElongation after fracture / %
AB654 ± 11961 ± 233.2 ± 1.6
DA1283 ± 241443 ± 115.0 ± 1.8
SA1238 ± 61393 ± 218.0 ± 1.8
Forged[35]1192138019.1
AMS 5663 standards1034127612.0
Table 4  Room-temperature tensile properties of GH4169 superalloy specimens
Fig.8  Low (a-c) and high (d-f) magnified SEM images showing the tensile fracture morphologies at room temperature of GH4169 superalloy specimens
(a, d) AB state (b, e) DA state (c, f) SA state
Fig.9  High-temperature engineering stress-strain curves of GH4169 superalloy specimens in AB, DA, and AS states
Temperature / oCStateYield strength / MPaTensile strength / MPaElongation after fracture / %
550AB582 ± 20836 ± 129.9 ± 2.7
DA1100 ± 661263 ± 111.9 ± 0.1
SA1111 ± 281195 ± 114.0 ± 0.6
650AB677 ± 4863 ± 1030.9 ± 1.4
DA949 ± 81158 ± 19.1 ± 0.6
SA999 ± 41129 ± 19.7 ± 0.8
AMS 5663 standard862100012
750AB656 ± 36837 ± 257.8 ± 1.0
DA635 ± 5825 ± 67.8 ± 1.1
SA684 ± 6850 ± 14.9 ± 0.8
Table 5  High-temperature tensile properties of GH4169 superalloy specimens
Fig.10  SEM images showing the high-temperature tensile fracture morphologies of GH4169 superalloy specimens at 550 oC (a, d, g), 650 oC (b, e, h), and 750 oC (c, f, i)
(a-c) AB state (d-f) DA state (g-i) SA state
Fig.11  TEM bright-field images of cellular structures of GH4169 superalloy specimens in AB (a), DA (b), and SA (c) states
Fig.12  High-angle annular dark field (HAADF) images and EDS mappings of cellular structure of GH4169 superalloy specimens in different states
(a) AB state (b) DA state (c) SA state
Fig.13  TEM bright-field images of matrix and Laves phase, and corresponding SAED patterns of the circle areas (insets) of samples
(a-f) γ matrix bright-field image (a) and SAED patterns with [100] axis (b) and [110] axis (c); Laves phase bright-field image (d) and SAED patterns with [101¯0] axis (e) and [112¯0] axis (f) of sample in AB state (g-j) γ matrix bright-field images under [100] axis (g) and [110] axis (i), and corresponding SAED patterns (h, j) of sample in DA state (k-o) γ matrix bright-field image under [100] axis (k) and SAED pattern (l), intragranular γ matrix bright-field image under [110] axis (m) and SAED pattern (n), and grain boundary γ matrix bright-field image under [110] axis (o) and SAED pattern (p) of sample in SA state
Fig.14  TEM bright-field images (a, e) and SAED patterns with [001] axis (insets), and corresponding TEM dark-field images of spots 1-3 indicated by the arrows (b-d, f, g) of specimens in DA (a-d) and SA (e-h) states
Fig.15  Schematics of microstructure evolution of GH4169 superalloy specimens in different states
(a) AB state (b) DA state (c) SA state
[1] Wang L, Lu B H. Development of additive manufacturing technology and industry in China [J]. Strategic Study CAE, 2022, 24(4): 202
王 磊, 卢秉恒. 我国增材制造技术与产业发展研究 [J]. 中国工程科学, 2022, 24(4): 202
[2] Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing [J]. Acta Mater., 2019, 164: 413
[3] Huang W P. Microstructure and mechanical property control of GH4169 superalloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2021
黄文普. 激光选区熔化成形GH4169合金的组织与性能调控 [D]. 武汉: 华中科技大学, 2021
[4] Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1
宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 1
[5] Zhao Y N, Guo Q Y, Ma Z Q, et al. Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties [J]. Mater. Sci. Eng., 2020, A791: 139735
[6] Zhang H, Yang K. Overview of the present situation and application of additive manufacturing [J]. Packag. Eng., 2021, 42(16): 9
张 衡, 杨 可. 增材制造的现状与应用综述 [J]. 包装工程, 2021, 42(16): 9
[7] Yang H, Li Y, Hao J M. Research progress of laser additively manufactured Inconel 718 superalloy [J]. Mater. Rep., 2022, 36(6): 20080021
杨 浩, 李 尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展 [J]. 材料导报, 2022, 36(6): 20080021
[8] Li F Z. Overview of the development and application of China's additive manufacturing industry [J]. Ind. Technol. Innovation, 2017, 4(4): 1
李方正. 中国增材制造产业发展及应用情况综述 [J]. 工业技术创新, 2017, 4(4): 1
[9] Li R F, Li K, Zhou W Z. Research progress in laser metal 3D printing technology [J]. Adhesion, 2022, 49(7): 98
李瑞锋, 李 客, 周伟召. 激光金属3D打印技术的研究进展 [J]. 粘接, 2022, 49(7): 98
[10] Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aviat. Manuf. Technol., 2016, (12): 26
杨 强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
[11] Ni L. Study on heat treatment process and mechanical properties of selective laser melting GH4169 alloy [D]. Zhenjiang: Jiangsu University, 2022
倪 磊. 激光选区熔化GH4169合金的热处理工艺与力学性能研究 [D]. 镇江: 江苏大学, 2022
[12] Bera T, Mohanty S. A review on residual stress in metal additive manufacturing [J]. 3D Print. Addit. Manuf., 2024, 11: 1462
[13] Kizhakkinan U, Seetharaman S, Raghavan N, et al. Laser powder bed fusion additive manufacturing of maraging steel: A review [J]. J. Manuf. Sci. Eng., 2023, 145: 110801
[14] Kwabena Adomako N, Haghdadi N, Primig S. Electron and laser-based additive manufacturing of Ni-based superalloys: A review of heterogeneities in microstructure and mechanical properties [J]. Mater. Des., 2022, 223: 111245
[15] Le W, Chen Z W, Naseem S, et al. Study on the microstructure evolution and dynamic recrystallization mechanism of selective laser melted Inconel 718 alloy during hot deformation [J]. Vacuum, 2023, 209: 111799
[16] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
[17] Wang Y, Guo W, Zheng H, et al. Microstructure, crack formation and improvement on nickel-based superalloy fabricated by powder bed fusion [J]. J. Alloys Compd., 2023, 962: 171151
[18] Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing [J]. Mater. Sci. Eng., 2017, A701: 344
[19] Aydinöz M E, Brenne F, Schaper M, et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading [J]. Mater. Sci. Eng., 2016, A669: 246
[20] Fayed E M, Saadati M, Shahriari D, et al. Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion [J]. Sci. Rep., 2021, 11: 2020
[21] Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy [J]. Mater. Sci. Eng., 2021, A801: 140427
[22] Ni M, Liu S C, Chen C, et al. Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting [J]. Mater. Sci. Eng., 2019, A748: 275
[23] Huang W P, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A750: 98
[24] Švec M, Solfronk P, Nováková I, et al. Comparison of the structure, mechanical properties and effect of heat treatment on alloy Inconel 718 produced by conventional technology and by additive layer manufacturing [J]. Materials, 2023, 16: 5382
[25] Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
[26] Liu B, Ding Y T, Xu J Y, et al. Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment [J]. Addit. Manuf., 2023, 67: 103491
[27] Feng K Y, Liu P, Li H X, et al. Microstructure and phase transformation on the surface of Inconel 718 alloys fabricated by SLM under 1050 oC solid solution + double ageing [J]. Vacuum, 2017, 145: 112
[28] Yazdanpanah A, Franceschi M, Revilla R I, et al. Revealing the stress corrosion cracking initiation mechanism of alloy 718 prepared by laser powder bed fusion assessed by microcapillary method [J]. Corros. Sci., 2022, 208: 110642
[29] Yoo J, Kim S, Jo M C, et al. Investigation of hydrogen embrittlement properties of Ni-based alloy 718 fabricated via laser powder bed fusion [J]. Int. J. Hydrogen Energy, 2022, 47: 18892
[30] Xu J J, Hao Z Q, Fu Z H, et al. Hydrogen embrittlement behavior of selective laser-melted Inconel 718 alloy [J]. J. Mater. Res. Technol., 2023, 23: 359
[31] Kaynak Y, Tascioglu E. Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted inconel 718 alloy [J]. Proc CIRP, 2018, 71: 500
[32] Chen S Y, Yang X, Dahmen K A, et al. Microstructures and crackling noise of AlxNbTiMoV high entropy alloys [J]. Entropy, 2014, 16: 870
[33] Cao Y. Study on the evolution mechanismof grain boundary charicteristics and precipitates of IN718 alloy fabricated by laser additive manufacturing [D]. Hohhot: Inner Mongolia University of Technology, 2021
曹 宇. 激光增材制造IN718合金晶界特征及析出相演变规律研究 [D]. 呼和浩特: 内蒙古工业大学, 2021
[34] Newell D J, O'Hara R P, Cobb G R, et al. Mitigation of scan strategy effects and material anisotropy through supersolvus annealing in LPBF IN718 [J]. Mater. Sci. Eng., 2019, A764: 138230
[35] Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
[36] Sun X. IN718 powder characteristics used in selective laser melting and microstructures of selective laser melted IN718 sample [D]. Chongqing: Chongqing University, 2014
孙 骁. 选区激光成形用IN718合金粉末特性及成形件组织结构的研究 [D]. 重庆: 重庆大学, 2014
[37] Chen W, Chaturvedi M C. On the mechanism of serrated deformation in aged Inconel 718 [J]. Mater. Sci. Eng., 1997, A229: 163
[38] Pink E, Grinberg A. Stress drops in serrated flow curves of A15Mg [J]. Acta Metall., 1982, 30: 2153
[39] Jiang H F, Zhang Q C, Chen X D, et al. Three types of Portevin-Le Chatelier effects: Experiment and modelling [J]. Acta Mater., 2007, 55: 2219
[40] Rodriguez P. Serrated plastic flow [J]. Bull. Mater. Sci., 1984, 6: 653
[41] Han G M, Cui C Y, Gu Y F, et al. Investigation of temperature dependence of PLC effect in a nickel base superalloy [J]. Acta Metall. Sin., 2013, 49: 1243
韩国明, 崔传勇, 谷月峰 等. 一种镍基高温合金PLC效应的温度依赖性研究 [J]. 金属学报, 2013, 49: 1243
[42] Qian K W, Li X Q, Xiao L G, et al. Dynamic strain aging phenomenon in metals and alloys [J]. J. Fuzhou Univ. Nat. Sci. Ed., 2001, 29(6): 8
钱匡武, 李效琦, 萧林钢 等. 金属和合金中的动态应变时效现象 [J]. 福州大学学报(自然科学版), 2001, 29(6): 8
[43] Sang L J, Lu J X, Wang J, et al. In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy [J]. J. Mater. Sci., 2021, 56: 16097
[44] Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49: 845
田素贵, 王 欣, 谢 君, 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49: 845
[45] McLouth T D, Witkin D B, Lohser J R, et al. Temperature and strain-rate dependence of the elevated temperature ductility of Inconel 718 prepared by selective laser melting [J]. Mater. Sci. Eng., 2021, A824: 141814
[46] Sampath D, Obasi G, Morana R, et al. Hydrogen-assisted cracking behavior of Ni alloy 718: Microstructure, H testing protocol, and fractography [J]. Metall. Mater. Trans., 2021, 52A: 46
[47] Cozar R, Pineau A. Morphology of γ' and γ'' precipitates and thermal stability of INCONEL 718 type alloys [J]. Metall. Trans., 1973, 4: 47
[48] Rong Y H, Chen S P, Hu G X, et al. Prediction and characterization of variant electron diffraction patterns for γ″ and δ precipitates in an Inconel 718 alloy [J]. Metall. Mater. Trans., 1999, 30A: 2297
[49] Du J H, Bi Z N, Qu J L. Recent development of triple melt GH4169 alloy [J]. Acta Metall. Sin., 2023, 59: 1159
杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展 [J]. 金属学报, 2023, 59: 1159
[50] Ghaemifar S, Mirzadeh H. Dissolution kinetics of Laves phase during homogenization heat treatment of additively manufactured Inconel 718 superalloy [J]. J. Mater. Res. Technol., 2023, 24: 3491
[51] Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
[52] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
[53] Luo S C, Huang W P, Yang H H, et al. Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
[54] Bai X, Fang W, Chang R B, et al. Effects of Al and Ti additions on precipitation behavior and mechanical properties of Co35Cr25-Fe40 - x Ni x TRIP high entropy alloys [J]. Mater. Sci. Eng., 2019, A767: 138403
[55] Dong Z C, Ouyang P X, Zhang S T, et al. Effect of building direction on anisotropy of mechanical properties of GH4169 alloy fabricated by laser powder bed fusion [J]. Mater. Sci. Eng., 2023, A862: 144430
[1] ZHANG Tianyu, ZHANG Peng, XIAO Na, WANG Xiaohai, LIU Guoqiang, YANG Zhigang, ZHANG Chi. Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] WANG Hongying, YAO Zhihao, LI Dayu, GUO Jing, YAO Kaijun, DONG Jianxin. Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] WU Zhiyong, SHAO Huifan, CAI Changchun, ZENG Min, WANG Zhenjun, WANG Yanli, CHEN Lei, XIONG Bowen. Tensile and Fracture Behaviors of Stitched Twill Carbon Fabric Structure Reinforced Aluminum Matrix Composites at Elevated Temperature[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] YANG Fan, PEI Shichao, LUO Xinrui, CHEN Yuxiang, LI Ningyu, CHANG Yongqin. Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing[J]. 金属学报, 2025, 61(8): 1129-1140.
[5] XIAO Wenlong, ZANG Chenyang, GUO Jintao, FENG Jiawen, MA Chaoli. Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. 金属学报, 2025, 61(8): 1153-1164.
[6] WU Zewei, YAN Junxiong, HU Li, HAN Xiuzhu. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. 金属学报, 2025, 61(8): 1165-1173.
[7] ZHANG Mingchuan, XU Qinsi, LIU Yi, CAI Yusheng, MU Yiqiang, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy[J]. 金属学报, 2025, 61(8): 1183-1192.
[8] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, GU Jinbo. Influence of Spray Forming Process on Carbide Characteristics and Mechanical Properties of M3 High-Speed Steel[J]. 金属学报, 2025, 61(8): 1229-1244.
[9] XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. 金属学报, 2025, 61(7): 998-1010.
[10] SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. 金属学报, 2025, 61(7): 1011-1023.
[11] XIE Ang, CHEN Shenghu, JIANG Haichang, RONG Lijian. Effects of Nb Content and Homogenization Treatment on the Microstructure and Mechanical Properties of Cast Austenitic Stainless Steel[J]. 金属学报, 2025, 61(7): 1035-1048.
[12] WANG Qiang, LI Xiaobing, HAO Junjie, CHEN Bo, ZHANG Bin, ZHANG Erlin, LIU Kui. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. 金属学报, 2025, 61(7): 1060-1070.
[13] GE Penghua, ZHANG Yong, LI Zhiming. Soft-Magnetic and Mechanical Behaviors of Heterostructured FeCoNi Medium-Entropy Alloys[J]. 金属学报, 2025, 61(7): 1119-1128.
[14] LI Dayu, YAO Zhihao, ZHAO Jie, DONG Jianxin, GUO Jing, ZHAO Yu. Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions[J]. 金属学报, 2025, 61(6): 826-836.
[15] HAO Xubang, CHENG Weili, LI Jian, WANG Lifei, CUI Zeqin, YAN Guoqing, ZHAI Kai, YU Hui. Electrochemical Behavior and Discharge Performance of a Low-Alloyed Mg-Ag Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2025, 61(6): 837-847.
No Suggested Reading articles found!