Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (12): 1769-1780    DOI: 10.11900/0412.1961.2024.00099
Research paper Current Issue | Archive | Adv Search |
Fabrication and Photoelectrochemical Properties of Ag/g-C3N4 Co-Sensitized TiO2 Nanotube Composite Film on Ti Substrate
GUAN Zichao1,2, HU Juan1,3, SHI Haiyan1, DONG Shigang4(), Liu Ya'an5, WANG Xia1, JIN Piao1, DU Ronggui1()
1 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
2 CNOOC Changzhou Paint and Coatings Industry Research Institute Co. Ltd. , Changzhou 213016, China
3 National Center of Inspection on Additive Manufacturing Product Quality, Wuxi 214101, China
4 College of Energy, Xiamen University, Xiamen 361102, China
5 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
Cite this article: 

GUAN Zichao, HU Juan, SHI Haiyan, DONG Shigang, Liu Ya'an, WANG Xia, JIN Piao, DU Ronggui. Fabrication and Photoelectrochemical Properties of Ag/g-C3N4 Co-Sensitized TiO2 Nanotube Composite Film on Ti Substrate. Acta Metall Sin, 2025, 61(12): 1769-1780.

Download:  HTML  PDF(2378KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Photoelectrochemical cathodic protection for metals, leveraging the unique photoelectrochemical properties of TiO2 semiconductor films, represents an innovative approach to corrosion protection with promising potential. However, pure TiO2 films exhibit limitations, including low visible light absorption, rapid recombination of photogenerated electrons and holes, and low photoelectric conversion efficiency. To enhance the photoelectrochemical properties of TiO2 film photoanodes, composite films are essential. In this study, a g-C3N4 layer and Ag nanoparticles were sequentially deposited onto an anodized TiO2 nanotube array film on a Ti foil via simplified chemical vapor deposition and chemical bath deposition, respectively, to enhance the TiO2 composite film's photoelectrochemical performance for metal cathodic protection applications. The results demonstrated substantial improvements in light absorption and photoelectrochemical performance for the Ag/g-C3N4 co-sensitized TiO2 nanotube composite film compared to the pure TiO2 nanotube array film. The Ag/g-C3N4/TiO2 composite film's light absorption was extended into the visible light spectrum, enhancing the separation efficiency of photogenerated electrons and holes. Under white light irradiation, the photocurrent density of the composite film in an aqueous solution containing 50% (volume fraction) ethylene glycol and 0.2 mol/L NaOH reached 135 μA/cm2, approximately 11 times that of the pure TiO2 film. Furthermore, when employed as a photoanode, the composite film on the Ti surface reduced the electrode potential of 403 stainless steel in a 0.5 mol/L NaCl solution by 530 mV relative to the steel's free corrosion potential, demonstrating a notably enhanced photoelectrochemical cathodic protection effect.

Key words:  Ti      anodic oxidation      chemical vapor deposition      chemical bath deposition      TiO2 nanotube      g-C3N4      Ag      photocathodic protection     
Received:  08 April 2024     
ZTFLH:  TG174.41  
Fund: National Natural Science Foundation of China(21573182)
Corresponding Authors:  DU Ronggui, professor, Tel: 13959276526, E-mail: rgdu@xmu.edu.cn; DONG Shigang, senior engineer, Tel: 13696994309, E-mail: sgdong@xmu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00099     OR     https://www.ams.org.cn/EN/Y2025/V61/I12/1769

Fig.1  Schematic for the preparation of TiO2 nanotube composite films (CVD—chemical vapor deposition)
Fig.2  SEM images of the prepared films of TiO2 (a), g-C3N4/TiO2 (b), Ag/TiO2 (c), and Ag/g-C3N4/TiO2 (d) (Insets show the corresponding cross-sectional morphologies, NP—nanoparticle)
Fig.3  EDS of the prepared films of TiO2 (a), g-C3N4/TiO2 (b), Ag/TiO2 (c), and Ag/g-C3N4/TiO2 (d)
SampleTiOCNAg
TiO248.4351.57---
g-C3N4/TiO222.8729.9433.8113.38-
Ag/TiO245.6353.81--0.56
Ag/g-C3N4/TiO223.4330.7633.5812.000.23
Table 1  Chemical compositions of the prepared films
Fig.4  XPS of the TiO2 nanotube film and the Ag/g-C3N4/TiO2 composite film
(a) full spectra
(b-f) high-resolution spectra of Ti2p (b), Ag3d (c), C1s (d), N1s (e), and O1s (f)
Fig.5  UV-Vis absorption spectra of the TiO2, g-C3N4/TiO2, Ag/TiO2, and Ag/g-C3N4/TiO2 films
Fig.6  Photoluminescence spectra of the TiO2, g-C3N4/TiO2, Ag/TiO2, and Ag/g-C3N4/TiO2 films
Fig.7  Transient photocurrent responses of the TiO2, g-C3N4/TiO2, Ag/TiO2, and Ag/g-C3N4/TiO2 films under intermittent white light illumination (i—current density, t—time)
Fig.8  Potential changes of 403 stainless steel (403SS) under different conditions (Curves a, b, and c represent uncoupled, coupled to the pure TiO2 film, and coupled to the Ag/g-C3N4/TiO2 composite film, respectively, E—potential, ΔE—potential fall)
Fig.9  Nyquist plots (a), Bode-phase plots (b), and Bode-modulus plots (c) of 403SS in the 0.5 mol/L NaCl solution under different conditions (Z—impedance,Z'—real component of the impedance, Z"—imaginary component of the impedance, f—frequency)
Fig.10  Equivalent circuit models for 403SS in the 0.5 mol/L NaCl solution (Rs—solution resistance, Rct—charge transfer resistance, R—film resistance, CPE and CPE1—constant phase elements)
(a) uncoupled (b) coupled to the illuminated film
SampleRsRctRCPECPE1
Ω·cm2kΩ·cm2kΩ·cm2Y0 / (10-5 Ω-1·cm-2·s n )nY0 / (10-5 Ω-1·cm-2·s n )n
403SS8.80161.3-7.910.87--
403SS-TiO28.5022.11.1616.10.8712.30.79
403SS-Ag/g-C3N4/TiO28.4211.99.9513.40.7814.40.75
Table 2  Fitting results of EIS for 403SS in the 0.5 mol/L NaCl solution
[1] Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials [J]. Chem. Rev., 2014, 114: 9919
[2] Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes [J]. Chem. Rev., 2014, 114: 9385
[3] Wang X T, Xu H, Nan Y B, et al. Research progress of TiO2 photocathodic protection to metals in marine environment [J]. J. Oceanol. Limnol., 2020, 38: 1018
[4] Li H, Cui X Q, Song W Z, et al. Direct Z-scheme MgIn2S4/TiO2 heterojunction for enhanced photocathodic protection of metals under visible light [J]. Nanotechnology, 2022, 33: 165703
[5] Guan Z C, Wang H P, Wang X, et al. Fabrication of heterostructured β-Bi2O3-TiO2 nanotube array composite film for photoelectrochemical cathodic protection applications [J]. Corros. Sci., 2018, 136: 60
[6] Sun W X, Cui S W, Wei N, et al. Hierarchical WO3/TiO2 nanotube nanocomposites for efficient photocathodic protection of 304 stainless steel under visible light [J]. J. Alloys Compd., 2018, 749: 741
[7] Feng C, Chen Z Y, Jing J P, et al. A novel TiO2 nanotube arrays/MgTi x O y multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection [J]. Corros. Sci., 2020, 166: 108441
[8] Jin P, Guan Z C, Liang Y, et al. Photocathodic protection on stainless steel by heterostructured NiO/TiO2 nanotube array film with charge storage capability [J]. Acta Phys. -Chim. Sin., 2021, 37: 1906033
金 飘, 官自超, 梁 燕 等. NiO/TiO2异质结构纳米管阵列膜对不锈钢的光生阴极保护及其储能性能(英文) [J]. 物理化学学报, 2021, 37: 1906033
[9] Li W F, Wet L C, Shen T, et al. Ingenious preparation of “layered-closed” TiO2-BiVO4-CdS film and its highly stable and sensitive photoelectrochemical cathodic protection performance [J]. Chem. Eng. J., 2022, 429: 132511
[10] Groenewolt M, Antonietti M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices [J]. Adv. Mater., 2005, 17: 1789
[11] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat. Mater., 2009, 8: 76
[12] Li W, Sohail M, Anwar U, et al. Recent progress in g-C3N4-based materials for remarkable photocatalytic sustainable energy [J]. Int. J. Hydrogen Energy, 2022, 47: 21067
[13] Naseri A, Samadi M, Pourjavadi A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions [J]. J. Mater. Chem., 2017, 5A: 23406
[14] Li N, Kong Z Z, Chen X Z, et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis [J]. J. Inorg. Mater., 2020, 35: 735
[15] Yang M M, Liu J, Zhang X, et al. C3N4-sensitized TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance [J]. Phys. Chem. Chem. Phys., 2015, 17: 17887
[16] Sun B, Lu N, Su Y, et al. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance [J]. Appl. Surf. Sci., 2017, 394: 479
[17] Imbar A, Vadivel V K, Mamane H. Solvothermal synthesis of g-C3N4/TiO2 hybrid photocatalyst with a broaden activation spectrum [J]. Catalysts, 2023, 13: 46
[18] Pham M T, Nguyen T M T, Bui D P, et al. Enhancing quantum efficiency at Ag/g-C3N4 interfaces for rapid removal of nitric oxide under visible light [J]. Sustain. Chem. Pharm., 2022, 25: 100596
[19] Xu J T, Huang Y Y, Zhang S H, et al. Plasmon-induced hot carrier separation across multicomponent heterostructure in Ag@AgCl@g-C3N4 composites for recyclable detection-removal of organic pollutions via SERS sensing [J]. Appl. Surf. Sci., 2023, 610: 155604
[20] Moradi R, Yousefi R, Adelpour Z, et al. The effects of Ag concentration on toluene gas sensing performance of Ag NPs decorated on g-C3N4 sheets [J]. J. Alloys Compd., 2023, 932: 167539
[21] Qi H P, Wang H L, Zhao D Y, et al. Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation [J]. Appl. Surf. Sci., 2019, 480: 105
[22] Zhao S D, Chen J R, Liu Y F, et al. Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability [J]. Chem. Eng. J., 2019, 367: 249
[23] Wang C H, Qin D D, Shan D L, et al. Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation [J]. Phys. Chem. Chem. Phys., 2017, 19: 4507
[24] Zhang Q, Wang H, Chen S, et al. Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production [J]. RSC Adv., 2017, 7: 13223
[25] Liu H, Yu D Q, Sun T B, et al. Fabrication of surface alkalinized g-C3N4 and TiO2 composite for the synergistic adsorption-photocatalytic degradation of methylene blue [J]. Appl. Surf. Sci., 2019, 473: 855
[26] Fajrina N, Tahir M. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0D nanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture [J]. Appl. Surf. Sci., 2019, 471: 1053
[27] Zhou D T, Chen Z, Yang Q, et al. Facile construction of g-C3N4 nanosheets/TiO2 nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance [J]. ChemCatChem, 2016, 8: 3064
[28] Ni J F, Fu S D, Yuan Y F, et al. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation [J]. Adv. Mater., 2018, 30: 1704337
[29] Lai Y K, Sun L, Chen Y C, et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity [J]. J. Electrochem. Soc., 2006, 153: D123
[30] Sun L, Li J, Wang C L, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity [J]. J. Hazard. Mater., 2009, 171: 1045
[31] Xie K P, Sun L, Wang C L, et al. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition [J]. Electrochim. Acta, 2010, 55: 7211
[32] Jing L Q, Qu Y C, Wang B Q, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity [J]. Sol. Energy Mater. Sol. Cells, 2006, 90: 1773
[33] Etacheri V, Di Valentin C, Schneider J, et al. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments [J]. J. Photochem. Photobiol, 2015, 25C: 1
[34] Wang Q Y, Zhong J S, Zhang M, et al. In situ fabrication of TiO2 nanotube arrays sensitized by Ag nanoparticles for enhanced photoelectrochemical performance [J]. Mater. Lett., 2016, 182: 163
[35] Ge M Z, Cao C Y, Li S H, et al. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting [J]. Nanoscale, 2016, 8: 5226
[36] Liu W J, Yin K C, He F, et al. A highly efficient reduced graphene oxide/SnO2/TiO2 composite as photoanode for photocathodic protection of 304 stainless steel [J]. Mater. Res. Bull., 2019, 113: 6
[37] Zuo S X, Liu Z, Liu W J, et al. TiO2 nanorod arrays on the conductive mica combine photoelectrochemical cathodic protection with barrier properties [J]. J. Alloys Compd., 2019, 776: 529
[38] Cui J, Pei Y S. Enhanced photocathodic protection performance of Fe2O3/TiO2 heterojunction for carbon steel under simulated solar light [J]. J. Alloys Compd., 2019, 779: 183
[39] Yang Y, Cheng Y F. One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection [J]. Electrochim. Acta, 2018, 276: 311
[40] Guo Y, Jin P, Shao M H, et al. Effect of an environmentally-friendly diisooctyl sebacate-based mixed corrosion inhibitor on reinforcing steel [J]. Acta Phys. -Chim. Sin., 2022, 38: 2003033
郭 亚, 金 飘, 邵敏华 等. 基于癸二酸二异辛酯的环保型复合缓蚀剂对钢筋的缓蚀效应(英文) [J]. 物理化学学报, 2022, 38: 2003033
[41] Pan G T, Li J H, Zhang G G, et al. Binder-integrated Bi/BiOI/TiO2 as an anti-chloride corrosion coating for enhanced photocathodic protection of 304 stainless steel in simulated seawater [J]. J. Alloys Compd., 2023, 938: 168469
[1] FU Haiyang, ZHANG Jiarong, LI Yaozhi, WANG Qitao, LI Xinle, YAN Wei, SHAN Yiyin, LI Yanfen. Corrosion Behavior and Mechanism of Low Activation 9Cr-ODS Steel in High Temperature and High Pressure Water Environment for the Application in Fusion Reactors[J]. 金属学报, 2025, 61(9): 1305-1319.
[2] ZHANG Xiaochen, LI Jing, LI Changji, XIONG Liangyin, LIU Shi. Corrosion Behavior of ODS FeCrAl Alloys Containing Zr Exposed to Lead-Bismuth Eutectic at 550 oC[J]. 金属学报, 2025, 61(9): 1320-1334.
[3] FU Wantang, WANG Wei, REN Liguo, BAI Xinghong, LV Zhiqing, LI Rongbin, LIU Haonan, QI Jianjun. Effect of V Distribution Characteristics on the Hardenability of a Novel 980 MPa Grade Extra-Thick Steel Plate for Marine Engineering[J]. 金属学报, 2025, 61(9): 1344-1352.
[4] ZHANG Tianyu, ZHANG Peng, XIAO Na, WANG Xiaohai, LIU Guoqiang, YANG Zhigang, ZHANG Chi. Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel[J]. 金属学报, 2025, 61(9): 1353-1363.
[5] ZHANG Tianhao, JU Quan, MENG Zhaobin, WANG Hao, HU Benfu. Microstructural Stability in Tungsten Argon-Arc Welded Joint of GH3230 Superalloy Plate[J]. 金属学报, 2025, 61(9): 1375-1386.
[6] WU Zhiyong, SHAO Huifan, CAI Changchun, ZENG Min, WANG Zhenjun, WANG Yanli, CHEN Lei, XIONG Bowen. Tensile and Fracture Behaviors of Stitched Twill Carbon Fabric Structure Reinforced Aluminum Matrix Composites at Elevated Temperature[J]. 金属学报, 2025, 61(9): 1387-1402.
[7] YOU Shiquan, CUI Gongjun, YANG Rongqian, LIU Yusong, FENG Xiaogang, KOU Ziming. High-Temperature Tribological Performance of Laser Clad MoNiCr Alloy Coatings Reinforced by Si[J]. 金属学报, 2025, 61(9): 1403-1412.
[8] BI Jianhaonan, ZHANG Yan, WANG Zhenyu, ZHOU Shenghao, LIU Yongyue, ZHANG Xiaoyan, WANG Aiying. Effect of Mo Content on the Microstructure, Mechanical and Tribological Properties of CrAlMoN Coatings[J]. 金属学报, 2025, 61(9): 1413-1424.
[9] ZHENG Deyu, XIA Yufeng, ZENG Yang, ZHOU Jie. Dynamic Recrystallization Process Simulation of GH4706 Alloy by Level-Set Method[J]. 金属学报, 2025, 61(9): 1425-1437.
[10] TAN Ruohan, SONG Yongfeng, CHEN Chao, LI Dan, CHENG Shu, LI Xiongbing. Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys[J]. 金属学报, 2025, 61(9): 1438-1448.
[11] WANG Bochen, REN Ying, KUANG Shuang, SHAN Qinglin, PAN Hongwei, LU Boxun, SHI Xiaowei, WANG Jujin, ZHANG Lifeng. Kinetic Study of Interaction Between Aluminum Deoxidized Steel and CaO-MgO-Al2O3 Refining Slag[J]. 金属学报, 2025, 61(9): 1335-1343.
[12] YANG Fan, PEI Shichao, LUO Xinrui, CHEN Yuxiang, LI Ningyu, CHANG Yongqin. Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing[J]. 金属学报, 2025, 61(8): 1129-1140.
[13] XIAO Wenlong, ZANG Chenyang, GUO Jintao, FENG Jiawen, MA Chaoli. Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. 金属学报, 2025, 61(8): 1153-1164.
[14] WU Zewei, YAN Junxiong, HU Li, HAN Xiuzhu. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. 金属学报, 2025, 61(8): 1165-1173.
[15] ZHU Chunjian, LI Yanhui, ZHU Zhengwang, WU Licheng, ZHANG Haifeng, ZHANG Wei. Regulation of Structure and Magnetic Properties of Fe98.5 -x B x Cu1.5 Nanocrystalline Alloys Based on B Content[J]. 金属学报, 2025, 61(8): 1174-1182.
No Suggested Reading articles found!