Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 737-743    DOI: 10.3724/SP.J.1037.2013.00561
Current Issue | Archive | Adv Search |
MICROSTRUCTURE OF RECRYSTALLIZATION AND THEIR EFFECTS ON STRESS RUPTURE PROPERTY OF SINGLE CRYSTAL SUPERALLOY DD6
XIONG Jichun1, LI Jiarong1, SUN Fengli2, LIU Shizhong1, HAN Mei1
1 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
2 The 3rd Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

XIONG Jichun, LI Jiarong, SUN Fengli, LIU Shizhong, HAN Mei. MICROSTRUCTURE OF RECRYSTALLIZATION AND THEIR EFFECTS ON STRESS RUPTURE PROPERTY OF SINGLE CRYSTAL SUPERALLOY DD6. Acta Metall Sin, 2014, 50(6): 737-743.

Download:  HTML  PDF(8579KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The specimens of single crystal superalloy DD6 were grit blasted and heat treated at 1100, 1200, and 1300 ℃ for 4 h at vacuum atmosphere respectively, then the microstructure of recrystallized DD6 alloy and their effects on the stress rupture performance were investigated. The results showed that cellular recrystallization nucleated in grit blasted samples heat treated at 1100 ℃ for 4 h, the dislocation tangles were found in the front of cellular recrystallization grain boundary in DD6 alloy, equiaxed recrystallization grains nucleated in grit blasted samples heat treated at 1300 ℃ for 4 h, and the carbides precipitate at the equiaxed recrystallization grain boundary, while the coexistence of equiaxed recrystallization grains and cellular recrystallization, defined as mixed recrystallization, occurred in the grit blasted samples heat treated at 1200 ℃ for 4 h. The cellular recrystallization reduced the stress rupture lives of DD6 alloy slightly, and the equiaxed recrystallization reduced stress rupture lives seriously, while the reduction degree of the stress rupture lives of the mixed recrystallization was between cellular recrystallization and equiaxed recrystallization. Besides this, with increase of depth of recrystallization and stress, the stresses rupture life decreased. It was also found that the fracture surface configuration was belonging to intergranular fracture with equiaxed recrystallization samples. The characteristic of the fracture surface changed to dimple fracture with cellular recrystallization samples, at all these condition the crack nucleated on the recrystallization grain boundaries of specimens during stress rupture process.

Key words:  single crystal superalloy      DD6      recrystallization      microstructure      stress rupture property     
ZTFLH:  TG132.3  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00561     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/737

Fig.1  SEM images of grit blasted DD6 alloy after different heat treatments

(a) 1100 ℃, 4 h, cellular recrystallization (CRX)

(b) 1100 ℃, 4 h, electrolytically etched, CRX

(c) 1200 ℃, 4 h, mixed recrystallization (MRX)

(d) 1300 ℃, 4 h, equiaxed recrystallization (ERX)

Fig.2  TEM and HRTEM images of CRX grain

(a) TEM image of CRX

(b) dislocation tangles in the front of CRX

(c) non recrystallization area far from CRX

(d) HRTEM image at CRX boundary (Insets show Fourier transformations)

Fig.3  SEM (a) and HRTEM (b) images of ERX grain (Insets show Fourier transformations)
Fig.4  Stress rupture lives of recrystallized DD6 alloy at 980 ℃, 250 MPa and 1070 ℃, 160 MPa
Fig.5  Elongations of recrystallized DD6 alloy at 980 ℃, 250 MPa and 1070 ℃, 160 MPa
Fig.6  Microstructures and fracture surfaces of failed specimens of DD6 alloy with recrystallization grains

(a) fracture surface of DD6 alloy with CRX

(b) fracture surface of DD6 alloy with ERX

(c) microstrure of DD6 alloy with CRX near fracture surface

(d) microstrure of DD6 alloy with MRX near fracture surface

(e) microstrure of DD6 alloy with ERX near fracture surface

(f) magnified microstrure of DD6 alloy with ERX near fracture surface

[1] Gell M, Duhl D N, Giamei A F. In: Tien J K, Gell M, Maurer G, Wlodek S T eds., Superalloys 1980, Seven Springs, PA: TMS, 1980: 205
[2] Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235
[3] Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 35
[4] Li J R, Zhong Z G, Tang D Z, Liu S Z, Wei P, Wei P Y, Wu Z T, Huang D, Han M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 777
[5] Xiong J C, Li J R, Zhao J Q, Liu S Z. Acta Metall Sin, 2009; 45: 1232
(熊继春, 李嘉荣, 赵金乾, 刘世忠. 金属学报, 2009; 45: 1232)
[6] Chen R Z. Aviat Eng Maint, 1990; 4: 22
(陈荣章. 航空制造工程, 1990; 4: 22)
[7] Wei P, Li J R, Zhong Z Z. J Mater Eng, 2001; (10): 5
(卫平, 李嘉荣, 钟振纲. 材料工程. 2001; (10): 5)
[8] Cox D C, Roebuck B, Rae C M F, Reed R C. Mater Sci Technol, 2003; 19: 440
[9] Li Y N, He D, Li S S, Han Y F. Acta Metall Sin, 2008; 44: 391
(李亚楠, 何 迪, 李树索, 韩雅芳. 金属学报, 2008; 44: 391)
[10] Wang Z G, Zhao J C, Yan P, Zhou T T, Liu P Y. J Iron Steel Res, 2009; 21(2): 23
(王志刚, 赵京晨, 燕 平, 周铁涛, 刘培英. 钢铁研究学报, 2009; 21(2): 23)
[11] Qu Y P, Liu L R, Zu G Q, Jin T, Hu Z Q. J Mater Eng, 2011; (8): 14
(曲彦平, 刘丽荣, 祖国庆, 金涛, 胡壮麒. 材料工程, 2011; (8): 14)
[12] Bürgel R, Portella P D, Preuhs J. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 229
[13] Wang L, Xie G, Zhang J, Lou L H. Scr Mater, 2006; 55: 457
[14] Xie G, Zhang J, Lou L H. Scr Mater, 2008; 59: 858
[15] Xiong J C, Li J R, Liu S Z, Zhao J Q, Han M. Mater Charact, 2010; 61: 749
[16] Xie G, Wang L, Zhang J, Lou L H. Metall Mater Trans, 2008; 39A: 206
[17] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1671
[18] Wang D L, Jin T, Yang S Q, Wei Z, Li J B, Hu Z Q. Mater Sci Forum, 2007; 546-549: 1229
[19] Xie G, Wang L, Zhang J, Lou L H. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloy 2008, Seven Springs, PA: TMS, 2008: 453
[20] Li J R, Sun F L, Xiong J C, Liu S Z, Han M. Mater Sci Forum, 2010; 638-642: 2279
[21] Khan T, Caron P, Nakagawa Y G. J Met, 1986; 38(7): 16
[22] Zhang B, Liu D L, Tao C H, Jiang T. J Aero Mater, 2012; 32(6): 85
(张兵, 刘德林, 陶春虎, 姜涛. 航空材料学报, 2012; 32(6): 85)
[23] Xiong J C, Li J R, Liu S Z, Han M. Chin J Nonferrous Met, 2010; 20: 1328
(熊继春, 李嘉荣, 刘世忠, 韩梅. 中国有色金属学报, 2010; 20: 1328)
[24] Xiong J C, Li J R, Liu S Z. Chin J Aeronaut, 2010; 23: 478
[25] Li J R, Zhao J Q, Liu S Z, Han M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Seven Springs, PA: TMS, 2008: 443
[26] Zhang B, Lu X, Liu D L, Tao C H. Mater Sci Eng, 2012; A551: 149
[27] Meng J, Jin T, Sun X F, Hu Z Q. Mater Sci Eng, 2010; A527: 6119
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[11] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!