Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1105-1112    DOI: 10.3724/SP.J.1037.2013.00184
Current Issue | Archive | Adv Search |
EFFECT OF HEAT TREATMENT PROCESS ON MICROSTRUCTURE AND HARDNESS OF V55Ti 30Ni 15 ALLOY FOR HYDROGEN PERMEATION
JIANG Peng, YU Yandong
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040
Cite this article: 

JIANG Peng, YU Yandong. EFFECT OF HEAT TREATMENT PROCESS ON MICROSTRUCTURE AND HARDNESS OF V55Ti 30Ni 15 ALLOY FOR HYDROGEN PERMEATION. Acta Metall Sin, 2013, 49(9): 1105-1112.

Download:  PDF(4098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

V55Ti30Ni15 alloy seems to be a promising alloy as a potential replacement for Pd-based alloy, which may reach a good combination of hydrogen permeability and mechanical stability in hydrogen. Metal rolling process is most widely used for sheet fabrication and may make multiphase V-Ti-Ni metallic membranes being thinner for increasing hydrogen transport flux. Different heat treatment processes have been carried out on a selected V55Ti30Ni15 alloy to soften for improved workability in this work. The effect of heat treated process on microstructure and hardness have been investigated for V55Ti30Ni15 alloy by using hardness measurement, OM, XRD, SEM, EDS and TEM. The microstructures resulting from different heat treatment temperatures and time have a great influence on hardness. Fine NiTi particles precipitate from the V-based supersaturate solid solution when the alloys were heat treated at 750 and 800℃, and the amount of NiTi particles increases with time. Fine NiTi particles precipitate from the V-based supersaturate solid solution results in the decrease in hardness. With increasing temperatures, fine NiTi particles re-dissolve into V-based solid solution, and the alloys hardness increase instead. Solid solution hardening of Ni and Ti elements is greater than precipitation strengthening of fine NiTi particles formed by atomic binding of Ni and Ti in V55Ti30Ni15 alloy. When the alloys were heat treated at 900℃, casting stress and lattice distortion decrease at heat treatment earlier stage, and then NiTi2 phases start to aggregate and spheroidize on phase boundaries with extended time. This causes the phenomenon that the hardness first decrease and then increase.

Key words:  V55Ti30Ni15 alloy      heat treatment      microstructure      hardness     
Received:  12 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00184     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1105

[1]Philpott J E. Platinum Met Rev, 1985; 29: 12

[2]Lubitz W, Tumas B. Chem Rev, 2007; 107: 3900
[3]Adhikari S, Fernando S. Ind Eng Chem Res, 2006; 45:875
[4]Ward T L, Dao T. J Membr Sci, 1999; 53: 211
[5]Phair JW, Donelson R. Ind Eng Chem Res, 2006; 45:5657
[6]Hunter J B. US Pat, 2773561, 1956
[7]Connor H. Platinum Metals Rev, 1962; 6: 130
[8]Hara S, Sakaki K, Itoh N, Kimura H M, Asami K, Inoue A.J Membr Sci, 2000; 164: 289
[9]Jiang P, Yu Y D, Song G, Liang D. Rare Met Mater Eng, 2013; 42: 868
(江 鹏, 于彦东, Guangsheng Song, Daniel Liang.稀有金属材料与工程, 2013; 42: 868)
[10]Dolan M D, Dave N C, Ilyushechkin A Y, Morpeth L D,McLennan K G. J Membr Sci, 2006, 285: 30
[11]Dolan M D. J Membr Sci, 2010; 362: 12
[12]Buxbaum R E, KinneY A B. Ind Eng Chem Res, 1996;35: 530
[13]Wipf H. Phys Scr, 2001; T94: 43
[14]Hashi K, Ishikawa K, Matsuda T, Aoki K. J Alloys Compd, 2004; 368; 215
[15]Hashi K, Ishikawa K, Matsuda T, Aoki K. J Alloys Compd, 2005; 405-406; 273
[16]Song G, Dolan M D, Kellam M E, Liang D, Zambelli S.J Alloys Compd, 2011; 509: 9322
[17]Shu J, Grandjean B P A, Van Neste A, Kaliaguine S.Can J Chem Eng, 1991; 69: 1036
[18]Ozaki T, Zhang Y, Komaki M, Nishimura C. Int J Hydrogen Energ, 2003; 28: 297
[19]Nishimura C, Ozaki T, Komaki M, Zhang Y. J Alloys Compd, 2003; 356-357: 295
[20]Ishikawa K, Tokui S, Aoki K. Intermetallics, 2009;17: 109
[21]Xiong L Y, Liu S, Wang L B, Rong L J. Acta Metall Sin, 2008; 44: 781
(熊良银, 刘 实, 王隆保, 戎利建. 金属学报, 2008; 44: 781)
[22]Liu Z W, Wang Z M, Liu F, Hu C H, Zhou H Y. Rare Met Mater Eng, 2011; 40: 1033
(刘战伟, 王仲民, 刘菲, 胡朝浩, 周怀营. 稀有金属材料与工程,2011; 40: 1033)
[23]Liu F, Wang Z M, Huang H W, Deng J Q, Zhou H Y. J Cent South Univ T (Nat Sci), 2012; 43: 3401
(刘 菲, 王仲民, 黄贺伟, 邓健秋, 周怀营.中南大学学报(自然科学版), 2012; 43: 3401)
[24]Massalski, T B, Okamoto, H, Subramanian, P R, Kacprzak, L.Binary Alloy Phase Diagrams. Detroit: ASM International,1996: 2874
[25]Callister W D, Rethwisch D G. Fundamentals of Materials Science and Engineering. New York: John Wiley & Sons,Inc., 2012: 174
[26]Fukuda T, Kakeshita T, Houjoh H, Shiraishi S, Saburi T.Mater Sci Eng, 1999; 273-275 A: 166
[27]Humbeeck J V. Adv Eng Mater, 2001; 3: 837
[28]Senkov O N, Miracle D B. Mater Res Bull, 2001; 36:2183
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!