Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1215-1222    DOI: 10.3724/SP.J.1037.2012.00265
Current Issue | Archive | Adv Search |
PHASE FIELD MODEL FOR MICROSTRUCTURE EVOLUTION OF SUBGRAIN IN DEFORMATION ALLOY
GAO Yingjun 1,2,3, LUO Zhirong 1,2, HUANG Lilin 1,2, HU Xiangying 2
1. Key Lab of Engineering Disaster Prevention and Structural Safety of China Ministry of Education, Guangxi University, Nanning 530004
2. College of Physics Science and Engineering, Guangxi University, Nanning 530004
3. International Center for Materials Physics, Chinese Academy of Science, Shenyang 110016
Cite this article: 

GAO Yingjun LUO Zhirong HUANG Lilin HU Xiangying. PHASE FIELD MODEL FOR MICROSTRUCTURE EVOLUTION OF SUBGRAIN IN DEFORMATION ALLOY. Acta Metall Sin, 2012, 48(10): 1215-1222.

Download:  PDF(3608KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is well know that static recrystallization (SRX), which occurs during post–deformation annealing, is greatly affected by the deformation formed during cold working. Therefore, to investigate and predict the SRX microstructure and SRX texture numerically with high accuracy, it is necessary to simulate the SRX process taking the deformation microstructure into consideration. A model that couples the crystal plasticity finite element method and microstructure evolution model is believed to be the most promising approach for SRX microstructure design. In this paper, the subgrain structure evolution is firstly studied by using the multi–state phase field (MSPF) model coupling with the lattice deformation model including the stored energy distribution of deformed alloy. The initial subgrain growth through the mechanism of mergence and swallow during recrystallization process are simulated by MSPF. The different amount of deformation effecting on subgrain distribution and subgrain growth rate are studied systematically. The calculated results show that in the region with higher stored energy, for example, around grain boundaries, there are very dense finer subgrains which recrystallize earliestly in the higher stored energy region during recrystallization process, and grow up by mergencing and swallowing, while the distribution of subgrains inside the deformation grain is relative uniform and with relative large subgrains which grow up slowly. The distribution of grains obtained by the weighted frequency shows that the grain distribution changes from small to large grain is fast for the larger deformed alloy, while the change is slow for the less deformed alloy. All the results are agreement with experimental ones.

Key words:  phase field model      subgrain      plastic deformation      Mg--based alloy     
Received:  10 May 2012     
ZTFLH:  TG115  
Fund: 

Supported by National Science Foundation of China (Nos.51161003 and 50661001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00265     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1215

[1] Yang X Y, Zhu Y K, Zhang L. Chin J Mater Res, 2010; 24: 169

(杨续跃, 朱亚坤, 张 雷. 材料研究学报, 2010; 24: 169)

[2] Yang X Y, Jiang Y P. Acta Metall Sin, 2010; 46: 451

(杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[3] Humphreys F J, HatherlyM. Recrystallization and Related Annealing Phenomena. Oxford: Elsevier Science, 1995: 1

[4] Wu X X, Yang X Y, Zhang L, Zhang Z L. Acta Metall Sin, 2011; 47: 140

(吴新星, 杨续跃, 张雷, 张之岭. 金属学报, 2011; 47: 140)

[5] Kim K H, Suh B C, Bac J H. Scr Mater, 2010; 63: 716

[6] Chun Y B, Hwang S K. Acta Mater, 2008; 56: 369

[7] Huang M X, Pedro E J, Castillo R D, Bouaziz O, Zwaag S. Acta Mater, 2009; 57: 3431

[8] Baudin T, Julliard F, Paillard P, Penelle R. Scr Mater, 2000; 43: 63

[9] Choi S H, Cho J H. Mater Sci Eng, 2005; A405: 86

[10] Sepehrband P, Esmaeli S. Scr Mater, 2010; 63: 4

[11] Zheng C W, Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Metall Sin, 2006; 42: 474

(郑成武, 兰勇军, 肖纳敏, 李殿中, 李依依. 金属学报, 2006; 42: 474)

[12] Raabe D, Hautchrli L. Comput Mater Sci, 2005; 34: 299

[13] Raabe D. Annu Rev Mater Res, 2002; 32: 53

[14] Radhakrishnan B, Sarma G. Philos Mag, 2004; 84: 2341

[15] Takaki T, Yamanaka A, Higa Y, Tomita Y. Mater Trans, 2008; 49: 2559

[16] Gao Y J, Luo Z R, Hu X Y, Huang C G. Acta Metall Sin, 2010; 46: 1161

(高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)

[17] Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 320

[18] Fan D, Chen L Q. Acta Mater, 1997; 45: 3297

[19] Wang M T, Zong B Y, Wang G. Comput Mater Sci, 2009; 45: 217

[20] Gao Y J, Luo Z R, Zhang S Y, Huang C G. Acta Metall Sin, 2010; 46: 1473

(高英俊, 罗志荣, 张少义, 黄创高. 金属学报, 2010; 46: 1473)

[21] Zhao P. Fundamental Course of Materials Science. Harbin: Harbin Institute of Technology Press, 1998: 148

(赵品. 材料科学基础教程. 哈尔滨: 哈尔滨工业大学出版社, 1998: 148)

[22] Oono Y, Pori S. Phys Rev Lett, 1987; 58: 836

[23] Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y. Acta Mater, 2008; 56: 821

[24] Pennock G M, Drury M R, Spiers C J. J Struct Geology, 2005; 27: 2159

[25] Xu S W. Master Thesis, Harbin Institute of Technology, 2006

(徐世伟. 哈尔滨工业大学硕士学位论文, 2006)

[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[6] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[7] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[8] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[9] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[10] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[11] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[12] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[13] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[14] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[15] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
No Suggested Reading articles found!