Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 1005-1010    DOI: 10.3724/SP.J.1037.2012.00116
论文 Current Issue | Archive | Adv Search |
RECRYSTALLIZATION NUCLEATION MECHANISM OF FGH4096 POWDER METALLURGY SUPERALLOY
NING Yongquan, YAO Zekun
School of Material Science and Engineering, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

NING Yongquan YAO Zekun. RECRYSTALLIZATION NUCLEATION MECHANISM OF FGH4096 POWDER METALLURGY SUPERALLOY. Acta Metall Sin, 2012, 48(8): 1005-1010.

Download:  PDF(6413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  FGH4096 is regarded as a promising powder metallurgy superalloy for high–temperature/pressure turbine disc in aerospace industries due to its high resistance/defect tolerance and high working temperature up to 750 ℃. In the present work, OM and TEM have been employed to study the recrystallization nucleation and microstructure evolution in FGH4096 powder metallurgy superalloy. It is proved that there exist three types of recrystallization mechanisms: nucleation from previous particle boundary (PPB), strain–induced nucleation from butterfly γ' phase (SIP) and twins superposition (TS) nucleation. The physical explanation for this is given from the view of point of micro–segregation, formation of the bend fold boundary and twins superposition, atomic diffusion and dislocation movement.
Key words:  powder metallurgy superalloy      recrystallization      nucleation mechanism     
Received:  05 March 2012     
ZTFLH: 

TG 113

 
Fund: 

Supported by National Natural Science Foundation of China (No.51101119) and China Postdoctoral Science Foundation (No.20110491686)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00116     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/1005

[1] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elseriver, 2004: 10

[2] Ning Y Q, Yao Z K, Fu M W, Guo H Z. Mater Sci Eng, 2011; A528: 8065

[3] Ning Y Q, Fu M W, Yao W. Mater Sci Eng, 2012; A539: 101

[4] Ning Y Q, Yao Z K, Xie X H, Guo H Z, Tan L J, Tao Y. Acta Metall Sin, 2010; 45: 58

(宁永权, 姚泽坤, 谢兴华, 郭鸿镇, 谭立军, 陶宇. 金属学报, 2010; 45: 58)

[5] Ning Y Q, Yao Z K, Yue TW, Guo H Z, Tao Y, Zhang Y W. Rare Met Mater Eng, 2010; 39: 1235

(宁永权, 姚泽坤, 岳太文, 郭鸿镇, 陶 宇, 张义文. 稀有金属材料与工程, 2010; 39: 1235)

[6] Reed R C. The Superalloys Fundamentals and Applications. New York: Cambridge University Press, 2006: 6

[7] Ning Y Q, Yao Z K, Guo H Z, Tao Y, Zhang Y W. Key Eng Mater, 2009; 407–408: 694

[8] Zhao M L, Sun WR, Yang S L, Qi F, Guo S R, Hu Z Q. Acta Metall Sin, 2009; 45: 79

(赵美兰, 孙文儒, 杨树林, 祈峰, 郭守仁, 胡壮麒. 金属学报, 2009; 45: 79)

[9] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J. Acta Mater, 2005; 53: 3041

[10] Tiley G, Viswanathan G B, Srinivasan R, Banerjee R, Dimiduk D M, Fraser H L. Acta Mater, 2009; 57: 2538

[11] MacSleyne J, Uchic M D, Simmons J P, Graef M D. Acta Mater, 2009; 57: 6251

[12] Dunlavy M A, Shivpuri R, Semiatin S L. Mater Sci Eng, 2003; A359: 210

[13] Viswanathan G B, Sarosi P M, Whitis D H, Mills M J. Mater Sci Eng, 2005; A400–401: 489

[14] Cao F L, Qing H, Gu Y X, Guan C B, Zhou Q. Gas Turbine Exp Res, 2007; 20(3): 15

(曹凤兰, 卿华, 古远兴, 关长波, 周全. 燃气涡轮试验与研究, 2007; 20(3): 15)

[15] Liu F J, Zhang M C, Dong X, Zhang Y W. Acta Metall Sin (Engl Lett), 2007; 20: 102

[16] Zhou X M, Wang W X, Tang D Z, Yan M G. Mater Eng, 2006; (11): 53

(周晓明, 汪武祥, 唐定中, 颜鸣皋. 材料工程, 2006; (11): 53)

[17] Liu J T, Liu G Q, Hu B F, Song Y P, Qin Z R, Zhang Y W. J Univ Sci Technol Beijing, 2006; 13: 319

[18] Tian G F, Jia C C, Wen Y, Hu B F. J Univ Sci Technol Beijing, 2008; 15: 729

[19] Ning Y Q, Yao Z K, Li H, Guo H Z, Tao Y, Zhang Y W. Mater Sci Eng, 2010; A527: 961

[20] Ning Y Q, Yao Z K, Li H, Guo H Z, Tao Y, Zhang Y W. Chin J Mech Eng, 2009; 22: 925

[21] Ning Y Q, Yao Z K, Fu M W, Guo H Z. Mater Sci Eng, 2010; A527: 6968

[22] Xie X H, Yao Z K, Ning Y Q, Guo H Z, Tao Y, Zhang Y W. J Aero Mater, 2011; 31: 22

(谢兴华, 姚泽坤, 宁永权, 郭鸿镇, 陶 宇, 张义文. 航空材料学报, 2011; 31: 22)

[23] Ozols A, Sirkin H R, Vicente E E. Mater Sci Eng, 1999; A262: 64

[24] Sun X Y, Song H M, Lin Q. J Chin Soc Rare Earths, 2004; 22: 177

(孙学义, 宋红梅, 林勤. 中国稀土学报, 2004; 22: 177)

[25] Yang P, Fu Y Y, Cui Y E. Acta Metall Sin, 2001; 37: 601

(杨平, 傅云义, 崔月娥. 金属学报, 2001; 37: 601)

[26] Yi M, Xiong H B, Lin Z. Shougang Sci Technol, 2008; (1): 1

(易敏, 熊化冰, 林志. 首钢科技, 2008; (1): 1)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[7] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[8] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[11] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[12] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[13] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[15] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
No Suggested Reading articles found!