Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 575-578    DOI: 10.3724/SP.J.1037.2011.00776
论文 Current Issue | Archive | Adv Search |
PREPARATION AND ELECTRICAL PROPERTIES OF Sc--DOPED CaZrO3
LI Ying, DING Yushi, CUI Shaogang, WANG Changzhen
College of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

LI Ying, DING Yushi, CUI Shaogang, WANG Changzhen. PREPARATION AND ELECTRICAL PROPERTIES OF Sc--DOPED CaZrO3. Acta Metall Sin, 2012, 48(5): 575-578.

Download:  PDF(1051KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  CaZrO3 solid state electrolyte displays proton conductivity and high chemical stability. The Sc doped CaZrO3 proton conductors were prepared by solid state reaction in order to improve the conductivity in this study. XRD analysis suggest that CaZr1-xScxO3-α(x=0, 0.1, 0.15) samples were synthesized completely. The electrochemical impedance spectra were applied to study the conductivities and the activation energy for proton diffusion of the CaZr1-xScxO3-α(x=0, 0.1, 0.15) in the temperature range of 610---850℃, and the electric conductivities of CaZr1-xScxO3-α were compared with those of CaZr1-xInxO3-α. The experiment results show that the electric conductivities of CaZrO3, CaZr0.9Sc0.1O3-α, CaZr0.85Sc0.15O3-α, CaZr0.9In0.1O3-α and CaZr0.85In0.15O3-α are 4.3×10-19---1.4×10-6 S/cm (610---850℃), 1.16×10-4---4.6×10-4 S/cm (690---850℃), 1.8×10-4---1.4×10-3 S/cm (610---850℃), 0.34×10-4---4.30×10-4 S/cm (741---847℃) and 0.57×10-4---4.33×10-4 S/cm (585---814℃), respectively. These conductivities results show that the conductivity of CaZrO3 proton conductor can be significantly improved by doping. The conductivities of CaZrO3 increase with the Sc doping content and temperature increasing. The results reveal that the conductivities of CaZr1-xScxO3-α are higher than those of CaZr1-xInxO3-α. Sc--doping is more beneficial for increasing the conductivity of CaZrO3 solid state electrolyte.
Key words:  solid state electrolyte      proton conductor      doping, electrochemical impedance spectroscope      conductivity     
Received:  09 December 2011     
ZTFLH: 

O646

 
Fund: 

National Natural Science Foundation of China;National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00776     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/575

[1] Hibino T, Hashimoto A, Suzuki M, Sano M.  J Electrochem Soc, 2002; 149: A1503

[2] Patcharavorachot Y, Brandon N P, Paengjuntuek W, Assabumrungrat S, Arpornwichanop A.Solid State Ionics, 2010; 181: 1568

[3] Wang W, Virkar A V.  Sens Actuators, 2004; 98B: 282

[4] Li Y, Yang Y J, Wang C Z.  Metall Mater Trans, 2008; 39B: 291

[5] Maffei N, Kuriakose A K.  Sens Actuators, 1999; 56B: 243

[6] Li Y, Wang C Z, Zhang Z L, Wang J X.  J Mater Sci Technol, 2010; 26(10): 957

[7] Li Y, Ding Y S, Hu J T, Wang C Z.  Acta Metallurgica Sinica, 2011; 47: 553

    (厉英, 丁玉石, 胡景涛, 王常珍. 金属学报, 2011; 47: 553)

[8] Li Y, Wang C Z.  J Rare Earths, 2008; 26: 337

[9] Iwahara H, Esaka T, Uchida H, Maeda N.  Solid State Ionics, 1981; 3--4: 359

[10] Iwahara H, Uchida H, Maeda N.  Solid State Ionics, 1983; 11: 117

[11] Li Y S, Ding Y S, Wang C Z.  Mater Sci Forum, 2010; 654--656: 2014

[12] Uchida H, Yoshikawa H, Esaka T, Ohtsu S, Iwahara H.  Solid State Ionics, 1989; 34: 103

[13] Iwahara H, Uchida H, Ono K, Ogaki K.  J Electrochem Soc, 1988; 135: 529

[14] Yajima T, Iwahara H.  Solid State Ionic, 1992; 50: 281

[15] Iwahara H.  Solid State Ionics, 1992; 52: 99

[16] Yajima T, Suzuki H, Yogo T, Iwahara H.  Solid State Ionics, 1992; 51: 101

[17] Yajima T, Suzuki H, Yogo T, Iwahara H.  Solid State Ionics, 1991; 47: 271

[18] Ding Y S, Li Y, Zhang Y, Wang C Z.  Adv Mater Res, 2011; 287--290: 939
 
[1] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[2] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[3] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[4] HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng. Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. 金属学报, 2022, 58(11): 1467-1477.
[5] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[6] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[7] CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles[J]. 金属学报, 2021, 57(3): 375-384.
[8] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[9] SONG Guihong,LI Guipeng,LIU Qiannan,DU Hao,HU Fang. Microstructure and Electric Conductance of Mg2(Sn, Si) Thin Films by Sputtering[J]. 金属学报, 2019, 55(11): 1469-1476.
[10] LI Dongmei, JIANG Beibei, LI Xiaona, WANG Qing, DONG Chuang. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. 金属学报, 2019, 55(10): 1291-1301.
[11] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[12] Di ZHANG, Mengying YUAN, Zhanqiu TAN, Ding-Bang XIONG, Zhiqiang LI. Progress in Interface Modification and Nanoscale Study of Diamond/Cu Composites[J]. 金属学报, 2018, 54(11): 1586-1596.
[13] Xiaoyun LIU,Wenguang WANG,Dong WANG,Bolv XIAO,Dingrui NI,Liqing CHEN,Zongyi MA. Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites[J]. 金属学报, 2017, 53(7): 869-878.
[14] XIANG Jianying CHEN Shuhai HUANG Jihua ZHAO Xingke ZHANG Hua. THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING[J]. 金属学报, 2012, 48(8): 965-970.
[15] SONG Lunan LIU Jiabin HUANG Liuyi ZENG Yuewu MENG Liang. EFFECT OF HEAVILY DRAWING ON THE MICROSTRUCTURE AND PROPERTIES OF Cu–Cr ALLOYS[J]. 金属学报, 2012, 48(12): 1459-1466.
No Suggested Reading articles found!