Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 555-560    DOI: 10.3724/SP.J.1037.2011.00724
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURES, MECHANNICAL PROPERTIES AND FRICTION PROPERTIES OF TiVCN COMPOSITE FILMS
XU Junhua, CAO Jun, YU Lihua
Key Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003
Cite this article: 

XU Junhua, CAO Jun, YU Lihua. MICROSTRUCTURES, MECHANNICAL PROPERTIES AND FRICTION PROPERTIES OF TiVCN COMPOSITE FILMS. Acta Metall Sin, 2012, 48(5): 555-560.

Download:  PDF(3024KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A series of TiVN and TiVCN nano-composite films with different V and C contents were synthesized using a multi-target magnetron sputtering technique. The microstructures, mechanical properties and friction properties at different test temperatures were investigated by X-ray diffraction, nano-indentation, CSM high-temperature ball-on-disc tribo-meter and SEM-EDS analysis. The results showed that the hardness values of the TiVN and TiVCN films reached maximum of 25.02 GPa and 28.51 GPa at a V target power of 60 W and C target power of 20 W, respectively. With the further increase of C, however, the hardness of TiVCN films decreased gradually. At room temperature, the friction coefficient of the TiVCN film decreased with the increase power of C target. At high temperature, the friction coefficient of the TiVCN showed a up-down-up curve with the increase of test temperature. The effects and adaptive mechanisms of Magneli phase formed in the TiVCN films at high temperature were discussed.
Key words:  TiVCN      magnetron sputtering      mechanical property      friction property      Magneli phase     
Received:  21 November 2011     
ZTFLH: 

TG174.44

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00724     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/555

[1] Zhao Y H, Lin G Q, Xiao J Q, Dong C, Wen L S.  J Mater Sci Technol, 2009; 25: 681

[2] Lin H, Yu J S, Wang N N, Lou S L, Jiang Y D.  J Mater Sci Technol, 2009; 25: 119

[3] Nong S B, Yu L H, Xu J H.  Surf Technol, 2008; 37: 45

    (农尚斌, 喻利花, 许俊华. 表面技术, 2008; 37: 45)

[4] Kong M, Hu X P, Dong Y S, Li G Y, Gu M Y.  Acta Phys Sin, 2005; 54: 3374

    (孔明, 胡晓萍, 董云杉, 李戈扬, 顾明元. 物理学报, 2005; 54: 3374)

[5] Matthes B, Broszeit E, Kloos K H.  Surf Coat Technol, 1993; 57: 97

[6] Yang Y L, Zhang D, Kou H S, Liu C S.  Acta Metall Sin, 2007; 20: 210

[7] Yu D H, Wang C Y, Cheng X L, Zhang F L.  Thin Solid Films, 2009; 517: 4950

[8] Ho W Y, Hsu C H, Chen C W, Wang D Y.  Appl Surf Sci, 2011; 257: 3770

[9] Braic M, Balaceanu M, Vladescu A, Zoita C N, Braic V.  Thin Solid Films, 2011; 519: 4092

[10] Lackner J M, Waldhauser W, Ebner R, Bakker R J, Schoberl T, Major B.  Thin Solid Films, 2004; 468: 125

[11] Zhang S, Fu Y Q, Du H J, Zeng X T, Liu Y C.  Surf Coat Technol, 2003; 162: 42

[12] Chang C L, Hsieh T J.  J Mater Process Technol, 2009; 209: 5521

[13] Abraham S, Choi E Y, Kang N, Kim K H.  Surf Coat Technol, 2007; 202: 915

[14] Kim K H, Ok J T, Abraham S, Cho Y R, Park I W, Moore J J.  Surf Coat Technol, 2006; 201: 4185

[15] Zhong D, Sutter E, Moore J J, Mustoe G G W, Levashov E A, Disam J.  Thin Solid Films, 2001; 398-399: 320

[16] Stueber M, Holleck H, Leiste H, Seemann K, Ulrich S, Ziebert C.  J Alloys Compd, 2009; 483: 321

[17] Kutschej K, Mayrhofer P H, Kathrein M, Pocik P, Mitterer C.  Surf Coat Technol, 2005; 200: 1731

[18] Martinez-Martinez D, Sanchez-Lopez J C, Rojas T C,Fernandez A, Eaton P, Belin M.  Thin Solid Films, 2005; 472: 64

[19] Erturk E, Knotek O, Burgmer W, Prengel H G, Heuvel H J, Dederichs H G, Stossel C. Surf Coat Technol, 1991; 46: 39

[20] Wang L, Dong S R, You J F, Yu L H, Li X M, Xu J H.  Trans Mater Heat Treat, 2010; 31: 113

     (汪雷, 董师润, 尤建飞, 喻利花, 李学梅, 许俊华. 材料热处理学报, 2010; 31: 113)

[21] Mayrhofer P H, Hovsepian P E, Mitterer C, Munz W D.  Surf Coat Technol, 2004; 177: 341

[22] Li M Z.  Master Dissertation, Xi'an Institute of Technology, 2010

     (李铭志. 西安工业大学硕士学位论文, 2010)

[23] Polcar T, Novak R, Siroky P.  Wear, 2006; 260: 40

[24] Meng J H, Lu J J, Wang J B, Yang S R.  Mater Sci Eng, 2006; 418: 68

[25] Erdemir A.  Tribology Lett, 2000; 8: 97
 
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!