Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 194-198    DOI: 10.3724/SP.J.1037.2011.00560
论文 Current Issue | Archive | Adv Search |
GRINDING PROCESS EFFECT ON SURFACE MODIFICATIVE LAYER MICROSTRUCTURE, PROPERTY AND FATIGUE BEHAVIOR OF CARBURIZED M50NiL STEEL
LUO Qinghong, LI Chunzhi, LOU Yanzhi, ZHAO Zhenye
Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

LUO Qinghong LI Chunzhi LOU Yanzhi ZHAO Zhenye. GRINDING PROCESS EFFECT ON SURFACE MODIFICATIVE LAYER MICROSTRUCTURE, PROPERTY AND FATIGUE BEHAVIOR OF CARBURIZED M50NiL STEEL. Acta Metall Sin, 2012, 48(2): 194-198.

Download:  PDF(748KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The surface hardness field, modificative layer microstructure and fatigue properties of carburized M50NiL steel after ordinary grinding and precision grinding, were studied using Vickers hardness tester, XRD, TEM, HRTEM and the rotating bending fatigue tester. The results showed that two grinding processes are different only on the amount of feed and surface roughness, but bring larger changes in the surface hardness field, modificative layer microstructure and fatigue properties. Two kinds of grinding have different effects on the hardness depth, the impact depth of precision grinding is smaller; There was more austenite on ordinary grinding surface, and the surface layer showed a clear modificative layer of austenitic"effective grain"; precision grinding surface modificative layer is very small deformation nano–martensite, but also shows a clear"effective grain"phenomenon;effective grainno obvious interface; "effective grain"turning phenomenon is apparent, adjacent "effective grain"rotation angle is up to 14?, while, there are slight turning phenomenon within the"effective grain"; rotating bending fatigue life of precision grinding increases by about 13 times of ordinary grinding sample.
Key words:  M50NiL steel      grinding modificative layer      microhardness      microstructure      fatigue property     
Received:  07 September 2011     
ZTFLH: 

TG115.21

 
  O0341

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00560     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/194

[1] Ma S Y, Xu J H, He X C, Tan M, Li J B. Acta Metall Sin, 2003; 39: 168

(马素媛, 徐建辉, 贺笑春, 覃明, 李家宝. 金属学报, 2003; 39: 168)

[2] Yang Y Y, Fang H S, Huang W G. Tribol Int, 1996; 29: 425

[3] Gao C Q. Friction Metallography. Harbin: Harbin Institute of Technology Press, 1988: 32

(高彩桥. 摩擦金属学. 哈尔滨: 哈尔滨工业大学出版社, 1988: 32)

[4] Wang C J, Lu D Q, Wu J X. Carburizing Bearing Steel and Heat Treatment. Beijing: Ordnance Industry Press, 1989: 51

(汪传稷, 陆大启, 吴继贤. 渗碳轴承用钢及其热处理. 北京: 兵器工业出版社, 1989: 51)

[5] Fu Y F, Cui L J, L iu Y L, Yan Y J. Heavy Machin Sci Technol, 2003; 4: 37

(付云峰, 崔连进, 刘雅琳, 严衍军. 重型机械科技, 2003; 4: 37)

[6] Boehmer H J, Ebert F J, Trojahn W. Lubr Eng, 1992; 48: 28

[7] Rosado L, Jain V K, Trivedi H K. Wear, 1997; 212: 19

[8] Pearson P K, Dickinson T W. in: Hoo J J C ed., Effect of Steel Manufacturing Processes on the Quality of Bearing Steels, ASTM STP 987, Philadelphia, PA: American

society for testing and materials, 1988: 113

[9] Xia G Z. China Aeronautical Materials Handbook, Beijing: China Standard Press, 1988: 20

(夏恭枕. 中国航空材料手册. 北京: 中国标准出版社, 1988: 20)

[10] B¨ohmer H J. in: Hoo J J C ed., Creative Use of Bearing Steels, ASTM STP 1195, Philadelphia, PA: American society for testing and materials, 1993: 34

[11] Boehmer H J, Ebert F J, Trojahn W. J Soc Tribol Lubr Eng, 1992; 48: 28

[12] Braza J F, Pearson P K. in: Hoo J J C ed., Creative Use of Bearing Steels, ASTM STP 1195, Philadelphia, PA: American society for testing and materials, 1993: 49

[13] Fu Y Q, Gu Y W, Batchelor A W, Zhou W. Mater Sci Technol, 1998; 14: 461

[14] Harris T A, Skiller J, Spitzer R F. Tribol Trans, 1992, 35: 731

[15] Liu J D, Wang G C, Chen K M, Xu Z L, Hou D P. Met Heat Treat, 2006; 31: 57

(刘菊东, 王贵成, 陈康敏, 许志龙, 侯达盘. 金属热处理, 2006; 31: 57)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!