Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (11): 1422-1427    DOI: 10.3724/SP.J.1037.2010.00462
论文 Current Issue | Archive | Adv Search |
METALLIC MATERIALS WITH NANO--SCALE TWINS
LU Lei, LU Ke
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LU Lei LU Ke. METALLIC MATERIALS WITH NANO--SCALE TWINS. Acta Metall Sin, 2010, 46(11): 1422-1427.

Download:  PDF(784KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Strengthening materials is a central objective of materials research. Traditional approaches to strengthen materials, including solid solution strengthening, second phase strengthening, grain refinement strengthening, dispersion strengthening and work hardening strengthening etc., aim at creation of internal defects and boundaries so as to obstruct the motion of dislocations. Such strategies for strengthening invariably compromise the ductility and electrical conductivity of the material. By reviewing recent advances in our understanding of nanostructured metals and alloys, we propose a novel approach to optimize the strength, ductility and the electrical conductivity of materials by means of coherent twin boundaries at nano-meter scale. We assess current understanding of strengthening mechanism of twin boundaries (instead of incoherent boundaries as conventionally used). Additionally, some mechanical properties (such as strength, ductility, strain rate sensitivity, work hardening) and the physical properties (electrical conductivity and electrical migration) as well as the relative preparation techniques of the metallic materials with nano-scale twins will be reviewed in this paper.
Key words:  nano-twin      mechanical property      physical property      deformation mechanism      syntheses technique     
Received:  09 September 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos. 50725103, 50890171 and 51071153) and National Basic Research Program of China (No.2005CB623604)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00462     OR     https://www.ams.org.cn/EN/Y2010/V46/I11/1422

[1] Lu K, Lu L, Suresh S. Science, 2009; 324: 349 [2] Hall E O. Proc Phys Soc London, 1951; 64B: 747 [3] Petch N J. J Iron Steel Inst, 1953; 174: 25 [4] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427 [5] Wei Q, Cheng S, Ramesh K T, Ma E. Mater Sci Eng, 2004; A381: 71 [6] Chen J, Lu L, Lu K. Scr Mater, 2006; 54: 1913 [7] Koch C C, Morris D G, Lu K, Inoue A. MRS Bull, 1999; 24: 54 [8] Koch C C. Scr Mater, 2003; 49: 657 [9] Ma E. Scr Mater, 2003; 49: 663 [10] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1 [11] Meyers M A, Chawla K K. Mechanical Behavior of Materials. Upper Saddle River, New Jersey: Pretice Hall, 1999: 1 [12] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422 [13] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989 [14] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126 [15] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H. Scr Mater, 2006; 54: 1163 [16] Lu L, Schwaiger R, Shan Z W, Dao M, Lu K, Suresh S. Acta Mater, 2005; 3: 2169 [17] Zhang X, Wang H, Chen X H, Lu L, Lu K, Hoagland R G, Misra A. Appl Phys Lett, 2006; 88: 173116 [18] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607 [19] Li X,Wei Y, Lu L, Lu K, Gao H. Nature, 2010; 464: 877 [20] Shen Y F, Lu L, Dao M, Suresh S. Scr Mater, 2006; 55: 319 [21] Lu L, Dao M, Zhu T, Li J. Scr Mater, 2009; 60: 1062 [22] Lu L, Zhu T, Shen Y F, Dao M, Lu K, Suresh S. Acta Mater, 2009; 57: 5165 [23] Zhao W S, Tao N R, Guo J Y, Lu Q H, Lu K. Scr Mater, 2005; 53: 745 [24] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771 [25] Zhang Y, Tao N R, Lu K. Acta Mater, 2008; 56: 2429 [26] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230 [27] Qin E W, Lu L, Tao N R, Lu K. Scr Mater, 2009; 60: 539 [28] Qin E W, Lu L, Tao N R, Tan J, Lu K. Acta Mater, 2009; 57: 6215 [29] Ustinov A I, Skorodzievski V S, Fesiun E V. Acta Mater, 2008; 56: 3770 [30] Dao M, Lu L, Shen Y F, Suresh S. Acta Mater, 2006; 54: 5421 [31] Chen K C, Wu W W, Liao C N, Chen L J, Tu K N. Science, 2008; 321: 1066 [32] Zhang X, Misra A,Wang H, Shen T D, Nastasi M, Mitchell T E, Hirth J P, Hoagland R G, Embury J D. Acta Mater, 2004; 52: 995 [33] Zhang X, Misra A, Wang H, Lima A L, Hundley M F, Hoagland R G. J Appl Phys, 2005; 97: 094302 [34] Zhang X, Anderoglu O, Misra A, Wang H. Appl Phys Lett, 2007; 90: 153101 [35] Li Y S, Zhang Y, Tao N R, Lu K. Acta Mater, 2009; 57: 761 [36] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103 [37] Zhang Y, Tao N R, Lu K. Scr Mater, 2009; 60: 211 [38] Hong C S, Tao N R, Lu K, Huang X. Scr Mater, 2009; 61: 289
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!