Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1181-1185    DOI: 10.3724/SP.J.1037.2010.00346
论文 Current Issue | Archive | Adv Search |
STUDY ON SECONDARY HARDENING MECHANISM OF Cr8Mo2SiV STEEL
CHI Hongxiao 1,2, MA Dangshen 2, WANG Chang 2, CHEN Zhaizhi 2, YONG Qilong 1,2
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2. Institute for Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

CHI Hongxiao MA Dangshen WANG Chang CHEN Zhaizhi YONG Qilong. STUDY ON SECONDARY HARDENING MECHANISM OF Cr8Mo2SiV STEEL. Acta Metall Sin, 2010, 46(10): 1181-1185.

Download:  PDF(1439KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cr8–type cold work die steels, such as Cr8Mo2SiV steel have been widely used in recent years due to high strength and high toughness, These steels have obvious secondary hardening effect. It has been widely reported that the secondary hardening mechanism of these die steels resulted from the combination of retained austenite and carbide precipitation. However, less attention has been paid on the secondary hardening of Cr8Mo2SiV steel. In order to investigate the secondary hardening mechanism of Cr8Mo2SiV steel, the hardness, retained austenite and precipitation of Cr8Mo2SiV steel were investigated in this paper by SEM, EDS, TEM and XRD analysis. Experimental results indicate that the secondary hardening peak of Cr8Mo2SiV steel which was quenched at 1030 ℃ appears at 520 ℃. Deep cryogenic treatment observably reduces the content of retained austenite, and thus increases the tempering hardness before secondary hardening peak and the secondary hardening peak shifted to low temperature by about 20 ℃. The tempered hardness of Cr8Mo2SiV steel decreased linearly wth the increase of soaking time when tempering at 520 ℃. The secondary hardening mechanism of Cr8Mo2SiV steel is the combination of the transformation of retained austenite and the earlstage of Mo2C precipitation, and the role of transformation of retained austenite is more obvious. The early tage of Mo2C–carbide precipitation is likely to be G.P. zone which ormed y [Mo–C] segregation group. As the tempering time extended, Mo2C precipitated, and it ws dispersive and uniformly distributed.
Key words:   cold work die steel      secondary hardening      retained austenite      carbide     
Received:  13 July 2010     
ZTFLH: 

TG142.1

 
Fund: 

Supported by National Key Technologies R&D Program of China (No.2007BAE510B04)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00346     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1181

[1] Chen Z Z, Lan D N. Die and Mould Steel Manual. Beijing: Metallurgical Industry Press, 2002: 18 (陈再枝, 蓝德年. 模具钢手册. 北京: 冶金工业出版社, 2002: 18) [2] Ma D S, Liu J H, Chen Z Z, Kang A J, Chi H X. Iron Steel, 2008; 43(9): 67 (马党参, 刘建华, 陈再枝, 康爱军, 迟宏宵. 钢铁, 2008; 43(9): 67) [3] Kou K. J Iron Steel Inst, 1953; 173: 363 [4] Kou K. J Iron Steel Inst, 1953; 174: 223 [5] Wang R, Dunlop G L. Acta Metall, 1984; 32: 1591 [6] Fischmeister H F, Karag¨oz S, Andr´en H O. Acta Metall, 1988; 36: 817 [7] Wang R, Andr´en H O,Wisell H, Dunlop G L. Acta Metall Mater, 1992; 40: 1727 [8] Leitner H, Stiller K, Andr´en H O, Danoix F. Surf Interface Anal, 2004; 36: 540 [9] Akr´e J, Danoix F, Leitner H, Auger P. Ultramicroscop, 2009; 109: 518 [10] Chen Y, Chen Z Z, Dong H, Ma D S, Liu J H. Special Steel, 2004; 25(2): 35 (陈 鹰, 陈再枝, 董 瀚, 马党参, 刘建华. 特殊钢, 2004; 25(2): 35) [11] Chen Y, Chen Z Z, Dong H, Ma D S, Liu J H. J Iron Steel Res, 2006; 18(5): 29 (陈鹰, 陈再枝, 董瀚, 马党参, 刘建华. 钢铁研究学报, 2006; 18(5): 29) [12] Chen J R, Li C J. Solid Transformation in Metal and Alloy, Beijing: Metallurgical Industry Press, 1997: 86 (陈景榕, 李承基. 金属与合金中的固态相变. 北京: 冶金工业出版社, 1997: 86) [13] Nutting J. J Iron Steel Inst, 2969; 207: 872 [14] Wang M Q, Dong H, Wang Q, Li J X, Zhao L. J Iron Steel Res, 2003; 15(6): 42 (王毛球, 董瀚, 王琪, 李建新, 赵隆. 钢铁研究学报,2003; 15(6): 42) [15] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281 (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报. 2009; 45: 1281) [16] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1288 (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报. 2009; 45: 1288) [17] Hu Z F, Wu X F, Wang C X. Acta Metall Sin, 2003; 39: 585 (胡正飞, 吴杏芳, 王春旭. 金属学报. 2003; 39: 585)
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[4] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[5] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[6] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[7] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[8] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[9] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[10] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[11] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[12] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[13] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[14] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[15] Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. 金属学报, 2018, 54(6): 831-843.
No Suggested Reading articles found!