Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (10): 1417-1427    DOI: 10.11900/0412.1961.2018.00020
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of the ZnAl-LDHs Film on 6061 Al Alloy Surface
Yusheng ZHANG1,2, Youbin WANG1,2(), Chunmin LI1,2, Bingtao ZHOU1,2, Keke CHENG1,2, Yuezhou WEI1,2
1 Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, China
2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Cite this article: 

Yusheng ZHANG, Youbin WANG, Chunmin LI, Bingtao ZHOU, Keke CHENG, Yuezhou WEI. Preparation and Corrosion Resistance of the ZnAl-LDHs Film on 6061 Al Alloy Surface. Acta Metall Sin, 2018, 54(10): 1417-1427.

Download:  HTML  PDF(10413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

6061 Al alloy is widely used for structural components in the structural, building, aerospace and automobile industry because of their good extrude-ability, high strength and low density. 6061 Al alloy is easily corroded during the corrosive environments containing Cl-, which lead to the decreasing of the alloy service life. Therefore, the Al alloy need to adopt surface treatment to improve the corrosion resistance. The chromate passivation was the most effective surface treatment technology of Al alloys in the past. However, Cr(VI) could pollute the environment and harmful to human body. Thus, it is necessary to develop chromium-free films to protect Al alloy. Layered double hydroxides (LDHs) are an environment-friendly and smart material, which could be used for anticorrosion film. The inhibitor can be inserted into the film layer due to its unique anion exchanging capacity. Therefore, the LDHs is acquired self-healing performance and applied to the anticorrosion field of Al alloy. Meanwhile, vanadate is a good inhibitor and it has many forms under different pH conditions. Moreover, different forms of vanadate have different influence on LDHs film. The corrosion resistance of LDHs and its modified form films on Al alloys need deep study. In this work, ZnAl-LDHs films with NO3- were prepared on the suface of 6061 Al alloy via a facile in-situ growth method, and then ZnAl-LDHs-NO3 films were intercalated with the corrosion inhibitor VO43- and VO3- to obtain the ZnAl-LDHs-VO4 and ZnAl-LDHs-VO3 films, respectively. The structure, morphology and composition of as-prepared ZnAl-LDHs films were investigated by XRD, fourier infrared spectrometer (FT-IR) and SEM; the corrosion behavior of ZnAl-LDHs films in the 3.5%NaCl (mass fraction) solution were studied by the electrochemical workstation and the 3D microscope. The results show that the plate-like ZnAl-LDHs microcrystals are perpendicular to the substrate and cover almost the entire Al alloy substrate surface. Compared with the 6061 Al substrate, ZnAl-LDHs films can not only decrease the corrosion current (Icorr), but also increase the corrosion potential (Ecorr) and charge transfer resistance (Rct) of the 6061 Al alloy. It is suggested that ZnAl-LDHs films could significantly enhance the corrosion resistance of 6061 Al substrate, indicating an effective protection for 6061 Al alloy by the ZnAl-LDHs film. The ZnAl-LDH-VO3 film is of the highest corrosion resistance in the studied ZnAl-LDHs films.

Key words:  Al alloy      ZnAl-LDHs film      corrosion     
Received:  12 January 2018     
ZTFLH:  TG178  
Fund: Supported by Guangxi Natural Science Foundation (No.2017GXNSFBA198202) and Guangxi Science and Technology Major Project (No.AA17204100)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00020     OR     https://www.ams.org.cn/EN/Y2018/V54/I10/1417

Fig.1  XRD spectra of 6061 Al substrate and different ZnAl-LDHs films
Fig.2  FT-IR spectra of different ZnAl-LDHs films on the 6061 Al alloy surface
Fig.3  SEM images (a1~c1) and related EDS maps (a2~c2, a3~c3) of ZnAl-LDHs-NO3 (a1~a3), ZnAl-LDHs-VO4 (b1~b3) and ZnAl-LDHs-VO3 (c1~c3) films on the 6061 Al alloy surface
Fig.4  Polarization curves of the 6061 Al substrate and different ZnAl-LDHs films immersed in 3.5%NaCl solution
Specimen Ecorr / V Icorr / (μAcm-2) Ep / V
6061 Al substrate -0.758 0.315 -0.538
ZnAl-LDHs-NO3 -0.692 0.057 -0.405
ZnAl-LDHs-VO4 -0.655 0.031 -0.233
ZnAl-LDHs-VO3 -0.615 0.014 -0.150
Table 1  Electrochemical parameters of the 6061 Al substrate and different ZnAl-LDHs films
Fig.5  Corrosion morphologies of 6061 Al substrate (a), ZnAl-LDHs-NO3 (b), ZnAl-LDHs-VO4 (c) and ZnAl-LDHs-VO3 (d) films
Fig.6  3D corrosion morphologies of 6061 Al substrate (a), ZnAl-LDHs-NO3 (b), ZnAl-LDHs-VO4 (c) and ZnAl-LDHs-VO3 (d) films corresponding to areas A~D in Fig.5, respectively
Area O Al Cl Zn N V
A1 74.88 24.27 0.85 - - -
A2 51.10 48.90 - - - -
B1 75.56 13.82 - - 10.62 -
B2 45.21 43.98 - 0.74 10.07 -
C1 74.46 24.56 0.98 - - -
C2 50.57 42.49 0.94 4.25 - 1.76
D1 52.25 47.49 - - - 0.39
D2 57.71 25.14 0.71 12.39 - 4.05
Table 2  EDS elemental compositions of the ZnAl-LDHs films after the polarization test at the positions indicated in Fig.7 (atomic fraction / %)
Fig.7  SEM images of 6061 Al substrate (a), ZnAl-LDHs-NO3 (b), ZnAl-LDHs-VO4 (c) and ZnAl-LDHs-VO3 (d) films after the polarization test
Fig.8  Bode plots (a, b) and Nyquist plot (c) of 6061 Al substrate and different ZnAl-LDHs films and equivalent circuit (d) for modeling impedance data (CPELDHs—LDHs films capacitance; RLDHs—LDHs film resistance; CPEdl—double layer capacitance; Rct—charge transfer resistance, Rsol—solution resistance of electrolyte)
Specimen CPELDHs / (Ω-1cm-2s-n1) RLDHs
Ωcm2
CPEdl / (Ω-1cm-2s-n2) Rct
Ωcm2
Y1 n1 Y2 n2
6061 Al substrate 1.34×10-5 0.25 9.01×100 5.37×10-6 0.85 9.86×103
ZnAl-LDH-NO3 4.25×10-6 0.97 3.41×102 4.25×10-6 0.87 9.28×104
ZnAl-LDH-VO4 3.59×10-6 0.77 1.27×103 4.33×10-6 0.91 1.37×106
ZnAl-LDH-VO3 4.39×10-6 0.76 1.25×103 4.04×10-6 0.91 5.67×106
Table 3  Fitting parameters of the equivalent circuit of 6061 Al substrate and different ZnAl-LDHs films in 3.5%NaCl solution
Fig.9  Preparation process diagram of the ZnAl-LDHs film on 6061 Al alloy surface
[1] Dursun T, Soutis C.Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56: 862
[2] Zou Y, Liu Q, Jia Z H, et al.The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content[J]. Appl. Surf. Sci., 2017, 405: 489
[3] Mondolfo L F.Aluminum Alloys: Structure and Properties[M]. London: Butterworths, 1976: 1
[4] Li H, Mao Q Z, Wang Z X, et al.Effect of high temperature pre-ageing and low-temperature re-ageing on mechanical properties and intergranular corrosion susceptibility of Al-Mg-Si-Cu alloys[J]. Acta Metall. Sin., 2014, 50: 1357(李海, 毛庆忠, 王芝秀等. 高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响[J]. 金属学报, 2014, 50: 1357)
[5] Sun F L, Li X G, Lu L, et al.Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of south China sea[J]. Acta Metall. Sin., 2013, 49: 1219(孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49: 1219)
[6] Li H, Zhao P P, Wang Z X, et al.The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy[J]. Corros. Sci., 2016, 107: 113
[7] Li H, Pan D Z, Wang Z X, et al.Influence of T6I6 temper on tensile and intergranular corrosion properties of 6061 aluminum alloy[J]. Acta Metall. Sin., 2010, 46: 494(李海, 潘道召, 王芝秀等. T6I6时效对6061铝合金拉伸及晶间腐蚀性能的影响[J]. 金属学报, 2010, 46: 494)
[8] Elabar D, La Monica G R, Santamaria M, et al. Anodizing of aluminium and AA 2024-T3 alloy in chromic acid: Effects of sulphate on film growth[J]. Surf. Coat. Technol., 2017, 309: 480
[9] Twite R L, Bierwagen G P.Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys[J]. Prog. Org. Coat., 1998, 33: 91
[10] Boisier G, Lamure A, Pébère N, et al.Corrosion protection of AA2024 sealed anodic layers using the hydrophobic properties of carboxylic acids[J]. Surf. Coat. Technol., 2009, 203: 3420
[11] Tedim J, Poznyak S K, Kuznetsova A, et al.Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers[J]. ACS. Appl. Mater. Interfaces, 2010, 2: 1528
[12] Xu L M, Wang X, Lei L, et al.Densification process of cerium-based conversion coatings on AZ31 magnesium alloy[J]. Chin. J. Nonferrous Met., 2013, 23: 3135(徐洛民, 王昕, 雷黎等. AZ31镁铝合金铈盐转化膜的致密化处理[J]. 中国有色金属学报, 2013, 23: 3135)
[13] Critchlow G W, Yendall K A, Bahrani D, et al.Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys[J]. Int. J. Adhes. Adhes., 2006, 26: 419
[14] Heller D K, Fahrenholtz W G, O'Keefe M J. The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3[J]. Corros. Sci., 2010, 52: 360
[15] Moutarlier V, Gigandet M P, Pagetti J, et al.An electrochemical approach to the anodic oxidation of Al 2024 alloy in sulfuric acid containing inhibitors[J]. Surf. Coat. Technol., 2002, 161: 267
[16] Cerezo J, Vandendael I, Posner R, et al.Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces[J]. Surf. Coat. Technol., 2013, 236: 284
[17] Williams G R, O'Hare D. Towards understanding, control and application of layered double hydroxide chemistry[J]. J. Mater. Chem., 2006, 16: 3065
[18] Li C M, Wei Y Z, Wang X P, et al.Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide[J]. J. Taiwan Inst. Chem. Eng., 2018, 85: 193
[19] Zhang Y, Yu P H, Wang J P, et al.LDHs/graphene film on aluminum alloys for active protection[J]. Appl. Surf. Sci., 2018, 433: 927
[20] Liu Y, Yu T W, Cai R, et al.One-pot synthesis of NiAl-CO3 LDH anti-corrosion coatings from CO2-saturated precursors[J]. RSC Adv., 2015, 5: 29552
[21] Zhang F, Liu Z G, Zeng R C, et al.Corrosion resistance of Mg-Al-LDH coating on magnesium alloy AZ31[J]. Surf. Coat. Technol., 2014, 258: 1152
[22] Zhang F Z, Sun M, Xu S L, et al.Fabrication of oriented layered double hydroxide films by spin coating and their use in corrosion protection[J]. Chem. Eng. J., 2008, 141: 362
[23] Wu F X, Liang J, Peng Z J, et al.Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy[J]. Appl. Surf. Sci., 2014, 313: 834
[24] Buchheit R G, Guan H, Mahajanam S, et al.Active corrosion protection and corrosion sensing in chromate-free organic coatings[J]. Prog. Org. Coat, 2003, 47: 174
[25] Zhang F, Zhang C L, Song L, et al.Corrosion resistance of superhydrophobic Mg-Al layered double hydroxide coatings on aluminum alloys[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1373
[26] Tedim J, Zheludkevich M L, Bastos A C, et al.Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection[J]. Electrochim. Acta, 2014, 117: 164
[27] Tedim J, Bastos A C, Kallip S, et al.Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results[J]. Electrochim. Acta, 2016, 210: 215
[28] Iannuzzi M, Frankel G S.Mechanisms of corrosion inhibition of AA2024-T3 by vanadates[J]. Corros. Sci., 2007, 49: 2371
[29] Iannuzzi M, Young T, Frankel G S.Aluminum alloy corrosion inhibition by vanadates[J]. J. Electrochem. Soc., 2006, 153: B533
[30] Tedim J, Zheludkevich M L, Salak A N, et al.Nanostructured LDH-container layer with active protection functionality[J]. J. Mater. Chem., 2011, 21: 15464
[31] Zheludkevich M L, Poznyak S K, Rodrigues L M, et al.Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor[J]. Corros. Sci., 2010, 52: 602
[32] Kloprogge J T, Weier M, Crespo I, et al.Intercalation of iron hexacyano complexes in Zn, Al hydrotalcite. Part 2. A mid-infrared and Raman spectroscopic study[J]. J. Solid State Chem., 2004, 177: 1382
[33] Zeng R C, Liu Z G, Zhang F, et al.Corrosion resistance of in-situ Mg-Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation[J]. Trans. Nonferr. Met. Soc. China, 2015, 25: 1917
[34] Salak A N, Tedim J, Kuznetsova A I, et al.Comparative X-ray diffraction and infrared spectroscopy study of Zn-Al layered double hydroxides: Vanadate vs nitrate[J]. Chem. Phys., 2012, 397: 102
[35] Liang W J, Rometsch P A, Cao L F, et al.General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu[J]. Corros. Sci., 2013, 76: 119
[36] Qiao Y X, Zhou Y, Chen S J, et al.Effect of bobbin tool friction stir welding on microstructure and corrosion behavior of 6061-T6 aluminum alloy joint in 3.5%NaCl solution[J]. Acta. Metall. Sin., 2016, 52: 1395(乔岩欣, 周洋, 陈书锦等. 双轴肩搅拌摩擦焊对6061-T6铝合金表面组织及其在3.5%NaCl中腐蚀行为的影响[J]. 金属学报, 2016, 52: 1395)
[37] Shahidi M, Gholamhosseinzadeh M R.Electrochemical evaluation of AA6061 aluminum alloy corrosion in citric acid solution without and with chloride ions[J]. J. Electroanalyt. Chem., 2015, 757: 8
[38] Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50: 1841
[39] Wang B B, Wang Z Y, Cao G W, et al.Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China[J]. Acta Metall. Sin., 2014, 50: 49(王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为[J]. 金属学报, 2014, 50: 49)
[40] Serdechnova M, Mohedano M, Kuznetsov B, et al.PEO coatings with active protection based on in-situ formed LDH-nanocontainers[J]. J. Electrochem. Soc., 2016, 164: C36
[41] Serdechnova M, Mohedano M, Bouali A C, et al.Role of phase composition of PEO coatings on AA2024 for in-situ LDH growth[J]. Coatings, 2017, 7: 190
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[3] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[4] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[5] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[6] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[7] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[8] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[15] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
No Suggested Reading articles found!