Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1449-1458    DOI: 10.11900/0412.1961.2015.00651
Orginal Article Current Issue | Archive | Adv Search |
MODELING OF ISOTHERMAL AUSTENITE TO FERRITE TRANSFORMATION IN A Fe-CALLOY BY PHASE-FIELD METHOD
Jun ZHANG1,2,Chengwu ZHENG2(),Dianzhong LI2
1 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
Cite this article: 

Jun ZHANG,Chengwu ZHENG,Dianzhong LI. MODELING OF ISOTHERMAL AUSTENITE TO FERRITE TRANSFORMATION IN A Fe-CALLOY BY PHASE-FIELD METHOD. Acta Metall Sin, 2016, 52(11): 1449-1458.

Download:  HTML  PDF(1152KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Austenite-to-ferrite transformation in modern steels is a key metallurgical phenomenon as it can be exploited to produce microstructures that are closely associated with significant improvement of their properties. Both experimental and theoretical studies of this transformation have received much attention. In particular, in recent years, considerable efforts have been directed to the development of numerical models for adequate quantitative descriptions of the nucleation and growth of ferrite grains as well as the overall transformation kinetics. In this work, a modified multi-phase field model has been developed to simulate the isothermal γ-α transformation in a Fe-C alloy. This model takes both the effect of a finite interface mobility and a finite diffusivity into account, which hence enables a clear description of the mixed-mode nature of the transformation. In contrast to the diffusion-controlled phase transformation model, the carbon concentration in front of the moving γ-α interface is found to be non-equilibrium under this circumstance. In order to study the microstructural behavior and kinetics over the entire temperature range of the phase transformation, three different isothermal transformation processes have been imulated. The simulation results indicate that the nucleation density of ferrite increases with decreasing the temperature, which thus leads to a larger volume fraction of ferrite. However, the heterogeneous distribution of carbon in the untransformed austenite is intensified. The final microstructural product of the transformation at low temperature of 1010 K consists of fine residual austenite islands surrounded by fine polygonal ferrite. The simulation results also indicate that the transformation mode from austenite to ferrite varies from essentially diffusion-controlled at high temperature towards interface-controlled at low temperature.

Key words:  phase-field      method,      austenite,      ferrite,      carbon      concentration      field,      mix-mode,      transformation      mode     
Received:  17 December 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51371169 and 51401214)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00651     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1449

Fig.1  Profiles of order parameter of grain i, ηi(r, t) (a) and carbon concentration x(r, t) (b) across the interface between austenite and ferrite (δ denotes the interface width; xγ and xα are the carbon contents in γ and α, respectively; x is the actual carbon content)
Fig.2  Simulation results of the temporal evolutions of the microstructure (a1~a4) and carbon concentration field (b1~b4) by phase-field at 1050 K during the isothermal transformations at time t =2 s (a1, b1), t =16 s (a2, b2), t =48 s (a3, b3) and t =60 s (a4, b4)
Fig.3  Profiles of carbon concentration across the interface along the growth direction shown in Fig.2a2 during the ferrite growth (xcγ,eq is the local-equilibrium carbon concentration andx0is the nominal carbon concentration, the arrow indicates the growth direction of the ferrite)
Fig.4  Effect of carbon diffusional mobility Mcγ on carbon concentration profile across the austenite-ferrite interface at different times (Arrow indicates the growth direction of the ferrite)
Fig.5  Driving forces for austenite-to-ferrite transformation as a function of carbon concentration in austenite
Fig.6  Simulation results of the microstructure evolution during the austenite-to-ferrite transformation at different isothermal temperatures (T) and t(a1) T=1010 K, t =2 s (a2) T=1010 K, t =16 s (a3) T=1010 K, t =32 s (a4) T=1010 K, t =48 s(b1) T=1048 K, t =2 s (b2) T=1048 K, t =16 s (b3) T=1048 K, t =48 s (b4) T=1048 K, t =60 s(c1) T=1087 K, t =2 s (c2) T=1087 K, t =16 s (c3) T=1087 K, t =48 s (c4) T=1087 K, t =100 s
Fig.7  Kinetics of austenite-to-ferrite transformation at different isothermal temperatures
Fig.8  Simulation results of carbon concentration field at different times during the austenite-ferrite transformation at different T and t(a1) T=1010 K, t =2 s (a2) T=1010 K, t =16 s (a3) T=1010 K, t =32 s (a4) T=1010 K, t =48 s(b1) T=1048 K, t =2 s (b2) T=1048 K, t =16 s (b3) T=1048 K, t =48 s (b4) T=1048 K, t =60 s(c1) T=1087 K, t =2 s (c2) T=1087 K, t =16 s (c3) T=1087 K, t =48 s (c4) T=1087 K, t =100 s
Fig.9  Profiles of carbon concentration across moving interface along the growth direction shown in Fig.8 at T=1010 K (a), T=1048 K (b) and T=1087 K (c) (Solid lines represent the carbon concentration profiles at different times. The circles indicate the carbon concentrations calculated by the interface-controlled model)
Fig.10  Mode parameter S as a function of ferrite fraction at different temperatures
[1] Offerman S E, van Dijk N H, Sietsma J, Lauridsen E M, Margulies L, Grigull S, Poulsen H F, van der Zwaag S.Acta Mater, 2004; 52: 4757
[2] Zener C. J Appl Phys, 1949; 20: 950
[3] Christian J W.The Theory of Transformations in Metals and Alloys. 3rd Ed., Oxford: Elsevier Science, 2002: 1
[4] Sietsma J, van der Zwaag S.Acta Mater, 2004; 52: 4143
[5] Kumar M, Sasikumar R, Nair P K.Acta Mater, 1998; 46: 6291
[6] Zhang L, Zhang C B, Wang Y M, Wang S Q, Ye H Q.Acta Mater, 2003; 51: 5519
[7] Lan Y J, Li D Z, Li Y Y.Acta Mater, 2004; 52: 1721
[8] Tong M M, Li D Z, Li Y Y.Acta Mater, 2005; 53: 1485
[9] Steinbach I, Pezzolla F, Nestler B, See?elberg M, Prieler R, Schmitz G J, Rezende J L L.Physica, 1996; 94D: 135
[10] Chen L Q.Annu Rev Mater Res, 2002; 32: 113
[11] Warren J A, Kobayashi R, Lobovsky A E, Carter W C.Acta Mater, 2003; 51: 6035
[12] Boettger B, Apel M, Eiken J, Schaffnit P, Steinbach I.Steel Res Int, 2008; 79: 608
[13] Gao Y J, Luo Z R, Hu X Y, Huang C G.Acta Metall Sin, 2010; 46: 1161
[13] (高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)
[14] Zhao Y, Zhang H Y, Wei H, Zheng Q, Jin T, Sun X F.Acta Metall Sin, 2013; 49: 981
[14] (赵彦, 张宏宇, 韦华, 郑启, 金涛, 孙晓峰. 金属学报, 2013; 49: 981)
[15] Ke C B, Ma X, Zhang X P.Acta Metall Sin, 2010; 46: 84
[15] (柯常波, 马骁, 张新平. 金属学报, 2010; 46: 84)
[16] Zhou G Z, Wang Y X, Chen Z.Acta Metall Sin, 2012; 48: 485
[16] (周广钊, 王永欣, 陈铮. 金属学报, 2012; 48: 485)
[17] Loginova I, ?gren J, Amberg G.Acta Mater, 2004; 52: 4055
[18] Mecozzi M G, Sietsma J, van der Zwaag S, Apel M, Schaffnit P, Steinbach I.Metall Mater Trans, 2005; 36A: 2327
[19] Huang C J, Browne D J, McFadden S.Acta Mater, 2006; 54: 11
[20] Moelans N.Acta Mater, 2011; 59: 1077
[21] Moelans N, Blanpain B, Wollants P.Phys Rev, 2008; 78B: 1098
[22] Eiken J, B?ttger B, Steinbach I.Phys Rev, 2006; 73E: 066122
[23] Gustafson P.Metall Trans, 1987; 18A: 175
[24] Umemoto M, Hiramatsu A, Moriya A, Watanabe T, Nanba S, Nakajima N, Anan G, Higo Y.ISIJ Int, 1992; 32: 306
[25] Zheng C W, Xiao N M, Hao L H, Li D Z, Li Y Y.Acta Mater, 2009; 57: 2956
[26] Du Q, Faber V, Gunzburger M.SIAM Rev, 1999; 41: 637
[27] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R. Parallel Programming in Open MP. San Mateo: Morgan Kaufmann Publishers, 2000: 1
[28] Chen H, van der Zwaag S.Acta Mater, 2014; 72: 1
[29] van Leeuwen Y, Sietsma J, van der Zwaag S.ISIJ Int, 2003; 43: 767
[30] van Bohemen S M C, Bos C, Sietsma J.Metall Mater Trans, 2011; 42A: 2609
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[6] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[9] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[10] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[11] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[12] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[13] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[14] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[15] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
No Suggested Reading articles found!