Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1163-1178    DOI: 10.11900/0412.1961.2015.00448
Current Issue | Archive | Adv Search |
ADVANCES IN SOLIDIFICATION CHARACTERISTICS AND TYPICAL CASTING DEFECTS IN NICKEL-BASED SINGLE CRYSTAL SUPERALLOYS
Jun ZHANG(),Taiwen HUANG,Lin LIU,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

Jun ZHANG,Taiwen HUANG,Lin LIU,Hengzhi FU. ADVANCES IN SOLIDIFICATION CHARACTERISTICS AND TYPICAL CASTING DEFECTS IN NICKEL-BASED SINGLE CRYSTAL SUPERALLOYS. Acta Metall Sin, 2015, 51(10): 1163-1178.

Download:  HTML  PDF(9419KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Single crystal (SC) superalloy is a kind of complex structure and multi phase materials. With the increase of the degree of alloying and the content of refractory elements, or the more complicated structure and larger size of the casting made of SC superalloy, it is essential important to suppress the formation of solidification defects to improve the quality and performance of the blades. The microstructure and solidification defects of single crystal alloy are not only related to the composition of the alloy, but also depend on its solidification characteristics and technological conditions. The paper first summarizes the research progress of the solidification characteristics for advanced SC superalloys, focusing on analysis of the effects of solidification characteristics and processing parameters on the formation and its mechanics for two typical directional solidification defects, crystallographic orientation deviation and stray grains. Then some methods and approaches to suppress such defect formation for complex single crystal blade have been reviewed.

Key words:  single crystal superalloy      solidification characteristic      solidification defect     
Fund: Supported by National High Technology Research and Development Program of China (No.2012AA03A511), National Natural Science Foundation of China (Nos.51331005 and 50931004), National Basic Research Program of China (No.2011CB610406) and NPU Foundation for Fundamental Research (No.2014JM62270)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00448     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1163

Fig.1  Effect of constituent level on liquidus temperature for Ru-containing multicomponent Ni-based superalloys[12]
Fig.2  Characteristic temperatures for single crystal superalloys with varied contents of Re (a) and Ru (b) (TL—liquidus temperature, TS—solidus temperature, Tsolvus—γ’ solvus temperature, T’—critical nucleation undercooling)[15]
Mass fraction of C / % TL TS TMC Tg
0.001 1367.6 1332.2 - 1284.4
0.006 1363.8 1326.6 1354.1 1285.8
0.045 1361.0 1329.2 1344.6 1293.5
0.085 1360.1 1327.3 1346.5 1284.6
0.150 1364.8 1333.7 1358.0 1281.8
Table 1  Effect of carbon content on phase transformation temperature for AM3 alloy[19]
Fig.3  Effects of Re and Ru on the eutectic fractions of as-cast alloys[15]
Fig.4  DTA curves of one third generation single crystal superalloy at superheating temperatures of 1450 ℃ (a), 1550 ℃ (b), 1580 ℃ (c), 1650 ℃ (d), 1700 ℃ (e) and 1780 ℃ (f)[25]
Fig.5  Effects of superheating temperature (a) and superheating time (b) on the partition coefficient K of the constituent elements in alloy DD90
Fig.6  Schematic of different solidification defects in single crystal turbine blade, modified from reference [26](LAB—low angle grain boundary, HAB—high angle grain boundary, RX grains—recrystallized grains, GS failure—grain selector failure)
Fig.7  Relationship between grain orientation deviation and initial height of the starter block[28]
Fig.8  Rlationship between the geometry of starter block and the single crystal orientation (d—diameter, h—height of starter block)[31]
Fig.9  Effects of withdrawal rate (a) and ceramic mould temperature (b) on the crystallographic orientation[28]
Fig.10  Schematic of the casting for "seeding+seletor" processing (a), macrostructures of section of helical selector (b) and the seed (c) (pulling rate V=100 mm/s)[34]
Fig.11  Schematic of dendritic growth of a single crystal in the presence of a cross-section enlargement[38]
Seed q1 q2 θ 1 θ 2 Dq1 Dq2
1 1.39 0 1.86 0.64 0.47 0.64
2 15.35 2.56 14.46 1.53 0.89 1.03
3 0.27 45.12 0.36 45.27 0.09 0.15
Table 2.  Comparison of dendritic orientation in spiral grain selector of outlet and in seed[34]
Fig.12  Simulation results of temperature field distribution in the blade platform at t=1740 s (a), t=1742 s (b) and t=1770 s (c), and schematic showing the liquidius isothermal in platform (d)[34]
Fig.13  Photograph of blade model at platform after macrocorrosion for alloy 1-1 (a), alloy 1-2 (b), alloy 2-1 (c), alloy 2-2 (d), alloy 3-1 (e), alloy 3-2 (f) and sampling position (g) (V=100 mm/s)[37]
Fig.14  Transverse section microstructure of platform in blade mode (a) by high rate solidification (HRS) method (b1~b4) and liquid meter cooling (LMC) method (b5~b8) at growth speeds of 3 mm/min (b1, b5), 4.5 mm/min (b2, b6), 6 mm/min (b3, b7) and 9 mm/min (b4, b8)[48]
Alloy Cr Co Mo W Al Ta Re C B Hf Ni
1-1 3.01 11.6 1.02 5.90 6.11 7.73 3.16 - - 0.04 Bal.
1-2 2.99 11.8 1.03 5.85 6.03 7.79 6.04 - - 0.09 Bal.
2-1 5.08 11.9 1.01 5.83 5.96 7.86 4.95 0.130 - 0.08 Bal.
2-2 5.05 12.0 1.01 6.00 5.99 8.14 5.08 0.085 - 0.09 Bal.
3-1 4.95 11.9 1.01 5.80 6.03 7.96 4.96 0.072 0.005 0.08 Bal.
3-2 4.94 11.8 1.01 5.77 5.99 7.85 4.87 0.078 0.014 0.07 Bal.
Table 3  Nominal composition of alloys used for studying the effect of composition change of Re, C and B on the formation of stray crystal in platform[37]
Fig.15  Effect of graphite block on the formation of stray grain (V=9 mm/min)[49]
Fig.16  CAFÉ (a) and experimental (b, c) results of single crystal superalloy blade model with grain continuator[49]
Fig.17  Schematic diagrams showing the layouts (a) of seeds in samples in ways of q1=0°, q2=0° (b), q1=15°, q2=0° (c), q1=0°, q2=15° (d), q1=0°, q2=30° (e) and q1=0°, q2=45° (f) (V=100 mm/s)[34]
Fig.18  Relationship between the deviation of secondary dendritic and misorientational angle[34]
Fig.19  Diagrams showing stray grains in seed section and helical selector section (V=100 mm/s)[34]
(a) seed and helical selector section of a casting macroetched to show the stray grains
(1) macrostructure at area 1 (2) macrostructure at area 2
(I) microstructure at location I (II) microstructure at location II (III) microstructure at location III
(b) EBSD inverse poles figures at location II
(c) EBSD inverse poles figures at location III
[1] Reed R C, Tao T, Warnken N. Acta Mater, 2009; 57: 5898
[2] Biavette D, Caron P, Khan T. Scr Metall, 1986; 20: 1395
[3] Mottura A, Wu R T, Finnis M W, Reed R C. Acta Mater, 2008; 56: 2669
[4] Tin S, Pollock T M. J Propul Power, 2006; 22: 361
[5] Tryon B, Feng Q, Pollock T M. Intermetallics, 2004; 12: 957
[6] Feng Q, Nandy T K, Pollock T M. Scr Mater, 2004; 50: 849
[7] D'Souza N, Dong H B. Scr Mater, 2007; 56: 41
[8] Zheng Y R. Acta Metall Sin, 1986; 22: 119 (郑运荣. 金属学报, 1986; 22: 119)
[9] Reed R C. The Superalloys: Fundamentals and Applications. New York: Cambridge University Press, 2006: 1
[10] Murakami H, Honma T, Koizumi Y, Harada H. In: Pollock T M, Kissinger R D, Bowman R R eds., Superalloy 2000, Warrendale: TMS, 2000: 747
[11] Kearsey R M, Beddoes J C, Jones P, Au P. Intermetallics, 2004; 12: 903
[12] Feng Q, Nandy T K, Tin S, Pollock T M. Acta Mater, 2003; 51: 269
[13] Heckl A, Rettig R, Singer R F. Metall Mater Trans, 2010; 41A: 202
[14] Hobbs R A, Tin S, Rae C M F, Broomfield R W, Humphreys C J. In: Green K A, Pollock T M, Harada H eds., Superalloys 2004, Warrendale: TMS, 2004: 819
[15] Liu G, Liu L, Zhao X B, Ge B M, Zhang J, Fu H Z. Metall Mater Trans, 2011; 42A: 2733
[16] Caldwell E C, Fela F J, Fuchs G E. In: Green K A, Pollock T M, Harada H eds., Superalloys 2004, Warrendale: TMS, 2004: 811
[17] Liu L R, Jin T, Zhao N R, Wang Z H. Mater Lett, 2004; 58: 2290
[18] Al-Jarba K A. PhD Dissertation, University of Florida, USA, 2003
[19] Hu Q, Liu L, Zhao X B, Gao S F, Zhang J, Fu H Z. Trans Nonferrous Met Soc China, 2013; 23: 3257
[20] Kearsey R M. PhD Dissertation, Carleton University, Canada, 2004
[21] Hobbs R A, Tin S, Rae C M F. Metall Mater Trans, 2005; 36A: 2761
[22] Tin S, Pollock T M. Mater Sci Eng, 2003; A348: 111
[23] Zheng L, Li S S, Xiao C B, Tang D Z, Gu C Q. Key Eng Mater, 2007; 353-358: 507
[24] Zhang J, Lou L H. J Mater Sci Technol, 2007; 23: 289
[25] Jiao S, Zhang J, Jin T, Wang C S, Wang H F, Liu L, Fu H Z. Rare Met Mater Eng, 2013; 42: 1028 (焦 莎, 张 军, 金 涛, 王常帅, 王海峰, 刘 林, 傅恒志. 稀有金属材料与工程, 2013; 42: 1028)
[26] Seth Brij B. In: Pollock T M, Kissrnger R D, Bowman R R, Gree K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 3
[27] Gao S F, Liu L, Wang N, Zhao X B, Zhang J, Fu H Z. Metall Mater Trans, 2012; 43A: 3767
[28] Gao S F, Liu L, Wang N, Zhao X B, Zhang J, Fu H Z. Mater Sci Technol, 2011; 27: 1783
[29] Dai H J, Dong H B, D'Souza N. Metall Mater Trans, 2011; 42A: 3439
[30] Esaka H, Shinozuka K, Tamura M. Mater Sci Eng, 2005; A413-414: 151
[31] Zhang X Y. Master Thesis, Northwestern Polytechnical University, Xi'an, 2013 (张晓越. 西北工业大学硕士学位论文, 西安, 2013)
[32] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631
[33] Zhang X L, Zhou Y Z, Jin T, Sun X F, Liu L. J Mater Sci Technol, 2013; 29: 879
[34] Jiao J J. Master Thesis, Northwestern Polytechnical University, Xi'an, 2015 (焦娟娟. 西北工业大学硕士学位论文, 西安, 2015)
[35] Stanford N, Djakovic A, Shollock B A, McLean M, Souza N D, Jennings P. In: Green K A, Pollock T M, Harada H eds., Superalloys 2004, Warrendale: TMS, 2004: 719
[36] Stanford N, Djakovic A, Shollock B A, McLean M. Scr Mater, 2004; 50: 159
[37] Chen X Z. Master Thesis, Northwestern Polytechnical University, Xi'an, 2014 (陈先州. 西北工业大学硕士学位论文, 西安, 2014)
[38] de Bussac A, Gandin C A. Mater Sci Eng, 1997; A237: 35
[39] Rappaz M, Gandin C A, Desbiolles J L. Metall Mater Trans, 1996; 27A: 695
[40] Napolitano R E, Schaefer R J. Mater Sci, 2000; 35: 1641
[41] Meyer T V, Dedecke D, Paul U, Sahm P R. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 471
[42] Zhang X L, Zhou Y Z, Jin T, Sun X F. Acta Metall Sin, 2012; 48: 1229 (张小丽, 周亦胄, 金 涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[43] Meng X B, LI J G, Chen Z Q. Metall Mater Trans, 2013; 44A: 1955
[44] Yang X L, Ness D, Lee P D, Souza N D. Mater Sci Eng, 2005; A413: 571
[45] Tin S, Pollock T M. Metall Mater Trans, 2003; 34A: 1953
[46] Gu J P, Beckermann C, Giamei A F. Metall Mater Trans, 1997; 28A: 1533
[47] Lu Y Z, Wang D W, Zhang J, Lou L H. Foundry, 2009; 58: 245 (卢玉章, 王大伟, 张 健, 楼琅洪. 铸造, 2009; 58: 245)
[48] Gao S F. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2012 (高斯峰. 西北工业大学博士学位论文, 西安, 2012)
[49] Chen C. Master Thesis, Northwestern Polytechnical University, Xi'an, 2013 (陈 纯. 西北工业大学硕士学位论文, 西安, 2013)
[50] Huang T W, Liu L, Zhang W G, Zhang J, Fu H Z. Acta Metall Sin, 2009; 45: 1225 (黄太文, 刘 林, 张卫国, 张 军, 傅恒志. 金属学报, 2009; 45: 1225)
[51] Ma D X, Bührig-Polaczek A. Metall Mater Trans, 2009; 40B: 738
[52] Ma D X, Zhou B, Bührig-Polaczek A. Adv Mater Res, 2011; 278: 306
[53] Xuan W D, Ren Z M, Ren W L, Yu J B, Chen C. J Iron Steel Res, 2011; 23: 369 (玄伟东, 任忠鸣, 任维丽, 余建波, 陈 超. 钢铁研究学报, 2011; 23: 369)
[54] Yang X L, Ness D, Lee P D. Mater Sci Eng, 2005; A413: 571
[55] D'Souza N, Jennings P A, Yang X L, Dong H B, Lee P D, McLean M. Metall Mater Trans, 2005; 36B: 657
[56] Yang C B, Liu L, Zhao X B, Sun D J, Zhang J, Fu H Z. Appl Phys, 2014; 114A: 979
[57] Zhou Y Z. Scr Mater, 2011; 65: 281
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[6] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[7] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[9] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[10] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[11] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[12] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[13] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[15] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
No Suggested Reading articles found!