Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1219-1226    DOI: 10.11900/0412.1961.2015.00384
Current Issue | Archive | Adv Search |
EFFECT OF MICROELEMENT Hf ON THE MICRO- STRUCTURE OF POWDER METALLURGY SUPERALLOY FGH97
Yiwen ZHANG1,2(),Shoubo HAN1,2,Jian JIA1,2,Jiantao LIU1,2,Benfu HU3
1 High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081
2 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Yiwen ZHANG,Shoubo HAN,Jian JIA,Jiantao LIU,Benfu HU. EFFECT OF MICROELEMENT Hf ON THE MICRO- STRUCTURE OF POWDER METALLURGY SUPERALLOY FGH97. Acta Metall Sin, 2015, 51(10): 1219-1226.

Download:  HTML  PDF(4000KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microelement Hf added in Ni-based powder metallurgy (PM) superalloy can modify microstructure and improve mechanical properties, such as stress-rupture life, creep resistance and crack growth resistance, and also benefit to eliminate notch sensitivity. So systematically studying the effect of microelement Hf on PM superalloy microctructure will help to comprehend its corresponding mechanism. The effects of microelement Hf on the morphologies, chemical compositions and content of γ’ phase and MC carbide in FGH97 PM Superalloy were investigated by means of SEM and physiochemical phase analysis. The results showed that Hf facilitated the precipitations of γ’ phase and MC carbide, and changed chemical compositions of γ’ phase and MC carbide, the effect of Hf on the size and morphology of MC carbide was not obvious, while Hf greatly affected the size and morphology of γ’ phase and accelerated the splitting of γ’ phase from one instable cubic γ’ particle to stable octet of cubes. As Hf affected the lattice misfit of γ’/γ phase (d), modifying Hf content changed the critical splitting size of γ’ phase (Dc). The relationship between Dc and Hf content (w(Hf)) was found to be Dc=315.4+640.2w(Hf)-358.2[w(Hf)]2. With Hf content increased, the absolute value of d decreased and Dc increased. Cubic γ’ particle split into an octet of cubes when γ’ phase grew up to the critical splitting size.

Key words:  powder metallurgy superalloy      FGH97      Hf      γ’ phase morphology stability      MC carbide     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00384     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1219

Hf content γ γ’ MC M6C+M3B2
0 37.678 61.930 0.264 0.128
0.16 37.503 62.080 0.266 0.151
0.30 37.378 62.180 0.270 0.172
0.58 37.062 62.450 0.293 0.195
0.89 36.762 62.690 0.338 0.210
Table 1  Phases contents in FGH97 alloys with different Hf contents
Fig.1  Low (a) and high (b) magnified SEM images of γ’ phase in FGH97 alloy with 0.30%Hf
Fig.2  SEM images of secondary γ’ phase in FGH97 alloys with 0 (a), 0.16%Hf (b), 0.30%Hf (c), 0.58%Hf (d) and 0.89%Hf (e), respectively
Fig.3  Changes of Al and Hf amounts in γ’ phase with different Hf contents in FGH97 alloys
Hf content γ’ phase at grain boundary Secondary γ’ phase Ternary γ’ phase Total
0 3.0 54.2 4.7 61.9
0.16 3.6 53.0 5.5 62.1
0.30 4.6 50.9 6.7 62.2
0.58 4.4 51.7 6.4 62.5
0.89 4.3 52.0 6.4 62.7
Table 2  γ’ phase contents in FGH97 alloys with different Hf contents
Fig.4  Low (a) and high (b) magnified SEM images of MC carbide of FGH97 alloy with 0.30%Hf
Fig.5  Relationship between mass fraction of MC carbide, metal elements in MC carbide and Hf content in FGH97 alloy
Hf content / % γ’ phase at grain boundary Secondary γ’ phase Ternary γ’ phase
0 820 276 14
0.16 890 284 16
0.30 1450 511 18
0.58 1240 411 16
0.89 1340 409 16
Table 3  Average γ’ particle sizes in FGH97 alloys with different Hf contents
Fig.6  Changes of mass fraction of Nb, Ti and Hf in MC carbide with Hf contents in FGH97 alloy
Fig.7  Relationship between Dc and Hf content in FGH97 alloy
Hf content Nb substituted by Hf Ti substituted by Hf Nb+Ti substituted by Hf
0.16 1.0 1.3 2.3
0.30 2.2 2.8 5.0
0.58 4.5 5.6 10.1
0.89 9.0 8.3 17.3
Table 4  Amounts of Ti and Nb substituted by Hf in MC carbide of FGH97 alloys with different Hf contents
Hf content / % d / % Dc / nm Da / nm
0 -0.118 321 276
0.16 -0.095 371 284
0.30 -0.075 519 511
0.58 -0.060 547 411
0.89 -0.048 608 409
Table 5  γ’/γ misfit d, critical splitting sizes of γ’ particle Dc and average γ’ particle sizes Da of FGH97 alloys with different Hf contents
[1] Evans D J, Eng R D. In: Hausner H H, Antes H W, Smith G D eds., Modern Developments in Powder Metallurgy. Vol.14, Princeton: MPIF and APMI, 1982: 51
[2] Белов А Ф, Аношкин Н Ф, Фаткуллин О Х. In: Банных О А ed., Жаропрочные и Жаростойские Стали и Сплавы на Никелевой Основе, Москва: Наука, 1984: 31
[3] Radavich J, Carneiro T, Furrer D, Lemsky J, Banik A. Chin J Aeronau, 2007; 20: 97
[4] Radavich J, Furrer D, Carneiro T, Lemsky J. In: Reed R C, Green K A eds., Superalloys 2008, Pennsylvania: TMS, 2008: 63
[5] Miner R V. Metall Trans, 1977; 8A: 259
[6] Larson J M, Volin T E, Larson F G. In: Braun J D, Arrowsmith H W, McCall J L eds., Microstructural Science. New York: American Elsevier Pub, 1977: 209
[7] Wang Y, Chen L Q, Khachaturyan A G. Acta Metall Mater, 1993; 41: 279
[8] Qiu Y Y. Acta Mater, 1996; 44: 4969
[9] Yoo Y S, Yoon D Y, Henry M F. Met Mater, 1995; 1: 47
[10] Qiu Y Y. J Alloys Compd, 1998; 270: 145
[11] Flageolet B, Villechaise P, Jouiad M. In: Green K A, Pollock T M, Haradra H eds., Superalloys 2004, Pennsylvania: TMS, 2004: 371
[12] Starink M J, Reed P A S. Mater Sci Eng, 2008; A491: 279
[13] Zhang Y W, Liu J T. Mater Chin, 2013; 32(1): 1 (张义文, 刘建涛. 中国材料进展, 2013; 32(1): 1)
[14] Zhang Y W, Wang F M, Hu B F. Rare Met Mater Eng, 2012; 41: 989 (张义文, 王福明, 胡本芙. 稀有金属材料与工程, 2012; 41: 989)
[15] Zhang Y W, Hu B F. Acta Metall Sin, 2015; 51: 967 (张义文, 胡本芙. 金属学报, 2015; 51: 967)
[16] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1984; 67: 247
[17] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1985; 74: 139
[18] Miyazaki T, Imamura H, Mori H, Kozakal T. J Mater Sci, 1981; 16: 1197
[19] Miyazaki T, Imamura H, Kozakai T. Mater Sci Eng, 1982; 54: 9
[20] Khachaturyan A G, Semenovskaya S V, Morris Jr J W. Acta Metall, 1988; 36: 1563
[21] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. J Shandong Univ Sci Technol (Nat Sci), 2009; 28(1): 51 (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 山东科技大学学报(自然科学版), 2009; 28(1): 51)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[3] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[4] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[5] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[6] Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY[J]. 金属学报, 2016, 52(5): 549-560.
[7] Yiwen ZHANG,Benfu HU. EFFECTS OF TOPOLOGICALLY CLOSE PACKED μ PHASE ON MICROSTRUCTURE AND PROPERTIES IN POWDER METALLURGY Ni-BASED SUPERALLOY WITH Hf[J]. 金属学报, 2016, 52(4): 445-454.
[8] Yiwen ZHANG,Benfu HU. FUNCTION OF MICROELEMENT Hf IN POWDER METALLURGY NICKEL-BASED SUPERALLOYS[J]. 金属学报, 2015, 51(8): 967-975.
[9] Yunsong ZHAO,Jian ZHANG,Yushi LUO,Dingzhong TANG,Qiang FENG. EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11[J]. 金属学报, 2015, 51(10): 1261-1272.
[10] XIAO Xuan, ZENG Chao, HOU Jieshan, QIN Xuezhi, GUO Jianting, ZHOU Lanzhang. THE DECOMPOSITION BEHAVIOR OF PRIMARY MC CARBIDE IN NICKEL BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ444[J]. 金属学报, 2014, 50(9): 1031-1038.
[11] CHEN Xiaoyan, ZHOU Yizhou, ZHANG Chaowei, JIN Tao, SUN Xiaofeng. EFFECT OF Hf ON THE INTERFACIAL REACTION BETWEEN A NICKEL BASE SUPERALLOY AND A CERAMIC MATERIAL[J]. 金属学报, 2014, 50(8): 1019-1024.
[12] ZHANG Yiwen WANG Fuming HU Benfu. EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ′ PRECIPITATES IN P/M Ni–BASED SUPERALLOY[J]. 金属学报, 2012, 48(8): 1011-1017.
[13] NING Yongquan YAO Zekun. RECRYSTALLIZATION NUCLEATION MECHANISM OF FGH4096 POWDER METALLURGY SUPERALLOY[J]. 金属学报, 2012, 48(8): 1005-1010.
[14] HU Benfu LIU Guoquan WU Kai HU Penghui. MORPHOLOGICAL CHANGES BEHAVIOR OF FAN-TYPE STRUCTURES OF γ' PRECIPITATES IN NICKEL-BASED POWDER METALLURGY SUPERALLOYS[J]. 金属学报, 2012, 48(7): 830-836.
[15] PENG Zhifang, DANG Yingying,PENG Fangfang. EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL[J]. 金属学报, 2012, 48(4): 450-454.
No Suggested Reading articles found!