Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1242-1252    DOI: 10.11900/0412.1961.2015.00265
Current Issue | Archive | Adv Search |
MICROSTRUCTURAL DEGRADATION AND MECHANI- CAL PROPERTIES OF GH4033 ALLOY AFTER OVERHEATING FOR SHORT TIME
Jinyan TONG1,2,Wei FENG1,3,Chao FU2,Yunrong ZHENG2,Qiang FENG1,2()
1 National Centre for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
3 Casting Center, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

Jinyan TONG,Wei FENG,Chao FU,Yunrong ZHENG,Qiang FENG. MICROSTRUCTURAL DEGRADATION AND MECHANI- CAL PROPERTIES OF GH4033 ALLOY AFTER OVERHEATING FOR SHORT TIME. Acta Metall Sin, 2015, 51(10): 1242-1252.

Download:  HTML  PDF(11597KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Service safety of turbine blades in aircraft engines are threatened by microstructural and property degradation instantly caused by overheating during service. Systematic investigations about microstructural degradation during overheating exposures and its influence on mechanical properties of turbine blades during service are limitedly reported. In this work, microstructure and mechanical properties of GH4033 alloy, which was sectioned from the shank of a serviced 2nd stage turbine blade in an aircraft engine, were studied after overheating at 900~1100 ℃ for 3 min. Microstructural degradation during overheating exposures as well as its influence on room temperature hardness and stress rupture life at 700 ℃, 430 MPa were analyzed. The results of microstructural characterization indicated that the coarsening and dissolution of γ’ precipitates were introduced by overheating exposures, and all of the γ’ precipitates dissolved at 980 ℃ for 3 min. Gradual dissolution of grain boundary (GB) carbides was observed with the increase of overheating temperature. Complete dissolution of GB carbides at 1100 ℃ resulted in grain growth. The room temperature hardness after overheating exposures decreased grossly with the dissolution of γ’ phase. Due to the dissolution and re-precipitation of γ’ phase as well as the dissolution of GB carbides, the stress rupture life under 700 ℃, 430 MPa of GH4033 alloy was initially increased and then decreased significantly.

Key words:  GH4033 wrought alloy      turbine blade      overheating      microstructure      rupture property     
Fund: Supported by National High Technology Research and Development Program of China (No.2012-AA03A513) and Key Project of Chinese Ministry of Education (No.625010337)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00265     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1242

Fig.1  Profile and temperature distribution during service of the 2nd stage turbine blade made of GH4033 alloy
Fig.2  Sketch of non-standard plate-type specimen for stress rupture test (unit: mm)
Fig.3  Microstructures of as-received GH4033 alloy
(a) carbides along grain boundaries (GBs) and interior grain
(b) morphology of γ’ precipitates
Fig.4  DSC curve of as-received GH4033 alloy
Fig.5  OM images of as-received GH4033 alloy (a) and after overheating at 1100 ℃ for 3 min (b)
Fig.6  Carbide morphologies along grain boundaries in as-received GH4033 alloy (a) and after overheating at 900 ℃ (b),950 ℃ (c), 980 ℃ (d), 1050 ℃ (e) and 1100 ℃ (f) for 3 min followed by water quenching
Fig.7  γ’ morphologies in GH4033 alloy after overheating at 900 ℃ (a), 950 ℃ (b), 980 ℃ (c) for 3 min followed by water quenching
Fig.8  Vickers hardness of as- received GH4033 alloy and after overheating at different temperatures for 3 min
Fig.9  Stress rupture life of GH4033 alloy after overheating at different temperatures for 3 min under 700 ℃ ,430 MPa
Temperature / ℃ Size / nm Volume fraction / %
As-received 26±3 14.0
900 32±4 12.0
950 37±5 8.7
980~1100 - 0
Table 1.  Average size and volume fraction of γ’ precipitates in GH4033 alloy after overheating at different temperatures for 3 min
Fig.10  Morphologies of GB carbides (a, c) and γ’ phases (b, d) in GH4033 alloy after overheating at 950 ℃ (a, b) and 980 ℃ (c, d) for 3 min followed by heat treatment at 700 ℃ for 2 h and then water quenching
Fig.11  Morphologies of GB carbides (a, c) and γ’ phases (b, d) of GH4033 alloy after overheating at 950 ℃ (a, b) and 980 ℃ (c, d) for 3 min followed by stress rupture at 700 ℃, 430 MPa
[1] Reed R C. The Superalloys Fundamentals and Applications. Cambridge, UK: Cambridge University Press, 2006: 18
[2] Guo J T. Materials Science and Engineering for Superalloys. Vol.3, Beijing: Science Press, 2010: 508 (郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2010: 508)
[3] Feng Q, Tong J Y, Zheng Y R, Wang M L, Wei W J, Zhao H L, Yuan X F, Ding X F. Mater China, 2012; 31(12): 21 (冯 强, 童锦艳, 郑运荣, 王美玲, 魏文娟, 赵海龙, 袁晓飞, 丁贤飞. 中国材料进展, 2012; 31(12): 21)
[4] Koul A, Wallace W. Met Mater Trans, 1983; 14A: 183
[5] Liburdi J, Lowden P, Nagy D, De Priamus T R, Shaw S. Proc ASME Turbo Expo, Orlando: International Gas Turbine Institute,2009: 819
[6] Yoo K B, Lee H S. Mater Sci Forum, 2010; 654-656: 2523
[7] Liu Q Q. Manufacture Technologies and Failure Analyses of Blades in Aircraft Engines. Beijing: Aviation Industry Press, 2011: 98 (刘庆瑔. 航空发动机叶片制造技术及失效分析. 北京: 航空工业出版社, 2011: 98)
[8] Tao C H. Faiture Analysis and Prevention for Rotor in Aero-Engine. Beijing: National Defense Industry Press, 2008: 1 (陶春虎. 航空发动机转动部件的失效与预防. 北京: 国防工业出版社, 2008: 1)
[9] Zhao W X, Li Y, Fan Y W, Zheng Y R. J Mater Eng, 2012; (8): 39 (赵文侠, 李 莹, 范映伟, 郑运荣. 材料工程, 2012; (8): 39)
[10] Tawancy H M, Al-Hdhrami L. Eng Fail Anal, 2008; 15: 1027
[11] Cai Y L,Zheng Y R. Metallographic Research of Superalloys. Beijing: National Defense Industry Press, 1986: 228 (蔡玉林,郑运荣. 高温合金的金相研究. 北京: 国防工业出版社, 1986: 228)
[12] Sun S Z, Li S Y, Zheng Y R. J Mater Eng, 1990; (3): 45 (孙淑珍, 李淑媛, 郑运荣. 材料工程, 1990; (3): 45)
[13] Li Y, Hou X Q, Tao C H, Jiang T. J Iron Steel Res, 2011; 23(suppl 2): 452 (李 莹, 候学勤, 陶春虎, 姜 涛. 钢铁研究学报, 2011; 23(增刊2): 452)
[14] Liu D L, Zhang W F, Li C G, Miao H B. Heat Treat Met, 2007; 32(1): 71 (刘德林, 张卫方, 李春光, 缪宏博. 金属热处理, 2007; 32(1): 71)
[15] Gao Y. New Manufacture Technologies, Metallograph Atlas and Manual for Data of Superalloys. Beijing: Science and Technology of China Press, 2006: 57 (高 原. 高温合金生产新工艺新技术与金相图谱及常用数据速用速查手册. 北京: 中国科技文化出版社, 2006: 57)
[16] Tong J Y, Ding X F, Wang M L, Zheng Y R, Yagi K, Feng Q. Mater Sci Eng, 2014; A618: 605
[17] Xu Y L, Jin Q M, Xiao X S, Cao X L, Jia G Q, Zhu Y M, Yin H J. Mater Sci Eng, 2011; A528: 4600
[18] Zhao Y, Gai X Y, Song G H. Phys Test Chem Anal: Phys Test, 2007; 43A: 498 (赵 越, 盖秀颖, 宋贵宏. 理化检验: 物理分册, 2007; 43A: 498)
[19] Bridges P J, White C H, Durber G L R. The Nimonic Alloys. Bristol: Edward Arnold Ltd, 1974: 33
[20] Richards E. J Inst Met, 1968; 96: 365
[21] Carter T J. Eng Fail Anal, 2005; 12: 237
[22] Zhang L H. Heat Treat, 2003; 18(3): 26 (张立红. 热处理, 2003; 18(3): 26)
[23] Ge T T. Master Thesis, University of Science and Technology Beijing, 2006 (葛婷婷. 北京科技大学硕士学位论文, 2006)
[24] Voice W E, Faulkner R G. Met Mater Trans, 1985; 16A: 511
[25] Furillo F T, Davidson J M, Tien J K, Jackman L A. Mater Sci Eng, 1979; A39: 267
[26] Iwashita C H. PhD Dissertation, Lehigh University, Bethlehem, 1998
[27] Bhowal P, Wright E, Raymond E. Met Trans, 1990; 21A: 1709
[28] Locq D, Caron P, Raujol S, Pettinari-Sturmel F, Coujou A, Clement N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Pennsylvania: TMS, 2004: 179
[29] Sun K J, Gai X Y, Li C X. Phys Test Chem Anal: Phys Test, 2009; 7A: 393 (孙克君, 盖秀颖, 李晨希. 理化检验: 物理分册, 2009; 7A: 393)
[30] Osada T, Nagashima N, Gu Y F, Yuan Y, Yokokawa T, Harada H. Scr Mater, 2011; 64: 892
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!