Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 993-1000    DOI: 10.11900/0412.1961.2015.00049
Current Issue | Archive | Adv Search |
INVESTIGATION OF THE ANISOTROPIC GROWTH OF OXIDE LAYERS FORMED ON Zr-4 ALLOYS CORRODED IN LiOH AQUEOUS SOLUTION
Shaoqiu GOU1,Bangxin ZHOU1,2(),Shijing XIE1,Long XU1,2,Meiyi YAO1,Qiang LI1,2
1 Institute of Materials, Shanghai University, Shanghai 200072
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

Shaoqiu GOU,Bangxin ZHOU,Shijing XIE,Long XU,Meiyi YAO,Qiang LI. INVESTIGATION OF THE ANISOTROPIC GROWTH OF OXIDE LAYERS FORMED ON Zr-4 ALLOYS CORRODED IN LiOH AQUEOUS SOLUTION. Acta Metall Sin, 2015, 51(8): 993-1000.

Download:  HTML  PDF(7947KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr-4 coarse-grained specimens were corroded in static autoclave at 360 ℃, 18.6 MPa in 0.01 mol/L LiOH aqueous solution for 70 and 160 d exposure. EBSD, SEM and HRTEM were used to investigate the microstructures and crystal structures of oxide layers, and the relationships between the oxide thickness and the grain orientation of the metal matrix. The results showed that the oxide layers formed on the grain surfaces with the orientations nearby basal plane (0001) were thicker, and exhibited a prominent anisotropic for the oxide growth when Zr-4 specimens were corroded in LiOH aqueous solution for 160 d, but this was not the case for 70 d. The grains with the surface orientation nearby (0001), (1010) and (1120) were selected from the specimens corroded for 70 d to investigate the effect of metal grain orientation on the microstructure of oxide layers. The results showed that the crystal structure and microstructure of oxide layers formed on different metal grains were obviously different, and the scattering of m-ZrO2 columnar grain orientations in the oxide layers formed on near basal plane (0001) was wider than that on near prismatic plane (1010) and (1120). Besides the majority of m-ZrO2, c-ZrO2, t-ZrO2 and sub-oxide phase Zr3O were also detected at the oxide/metal interface, and it showed that the microstructure and crystal structure of oxide layers were very complex. The microstructural evolution of oxide layers will affect the diffusion of oxygen and subsequently the growth of oxide. Therefore, the microstructural evolution of oxide layers, which was affected by the different microstructure of oxide layers formed initially on grains and the water chemistry of corrosion tests, resulted in the anisotropic growth of oxide layers when Zr-4 specimens were corroded in LiOH aqueous solution in subsequent corrosion tests.

Key words:  Zr-4      corrosion resistance      anisotropic growth      oxide layer      microstructure     
Fund: Supported by National Natural Science Foundation of China (Nos.51171102 and 51271104)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00049     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/993

Fig.1  Inverse pole figures (IPFs) of the relationship between the oxide thickness and the surface orientation of metal grains obtained from Zr-4 coarse-grained specimens corroded at 360 ℃ in LiOH aqueous solution for 70 d (a) and 160 d (b)
Fig.2  Surface morphology (a) and cross sectional SEM image (b) of the oxide layer formed on Zr-4 coarse-grained specimens corroded at 360 ℃ in LiOH aqueous solution for 160 d
Fig.3  SAED patterns (a~c) and dark field TEM images (d~f) of m-ZrO2 columnar grains in oxide layers formed on the surface of metal grains near (0001) (a, d), (1010) (b, e) and (1210) (c, f) obtained from Zr-4 coarse-grained specimens corroded for 70 d
Fig.4  HRTEM images and FFT patterns of the oxides at the oxide/metal (O/M) interface (a) and near the O/M interface (b) formed on (1010) plane
Fig.5  IFFT patterns of (200) (a) and (111) (b) for c-ZrO2 area outlined in Fig.4b and strain fields obtained from the geometric phase images analyzed using Fig.5a (c) and Fig.5b (d) (Arrows in Figs.5a and b show the dislocation cores)
Fig.6  Fracture surface morphologies of the thicker (a, b) and the thinner (c, d) oxide layers formed on Zr-4 coarse-grained specimens corroded at 360 ℃ in LiOH aqueous solution for 160 d (Figs.6b and d show the enlarged images of virtual boxes in Figs.6a and c, respectively)
[1] Han J H, Rheem K S. J Nucl Mater, 1994; 217: 197
[2] Kim H J, Kim T H, Jeong Y H. J Nucl Mater, 2002; 306: 44
[3] Bakradze G, Jeurgens P H, Mittemeijer J. Surf Interface Anal, 2010; 42: 588
[4] Charquet D, Tricot R, Wadier J F. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry, 8th International Symposium, ASTM STP 1023, West Conshohocken, PA: ASTM International, 1989: 374
[5] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q. Acta Metall Sin, 2012; 48: 1103 (孙国成, 周邦新, 姚美意, 谢世敬, 李 强. 金属学报, 2012; 48: 1103)
[6] Favergeon J, Montesin T, Bertrand G. Oxid Met, 2005; 64: 253
[7] Zhang C S, Flinn B J, Mitchell I V, Norton P R. Surf Sci, 1991; 245: 373
[8] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limbck M, Barbéris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Bridgeport: ASTM International, 2011: 620
[9] Garvie R C. J Phys Chem, 1965; 69: 218
[10] Preuss M, Frankel P, Lozano-Perez S, Hudson D, Polatidis E, Ni N, Wei J, English C, Storer S, Chong K B, Fitzpatrick M, Wang P, Smith J, Grovenor C, Smith G, Sykes J, Cottis B, Lyon S, Hallstadius L, Comstock R J, Ambard A, Blat-Yrieix M. In: Limbck M, Barbéris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Bridgeport: ASTM International, 2011: 649
[11] Zhang H X, Fruchart D, Hill E K, Ortega L, Li Z K, Zhang J J, Sun J, Zhou L. J Nucl Mater, 2010; 396: 65
[12] Béchade J L, Dralet R, Goudeau P, Yvon P. Mater Sci Forum, 2000; 347: 471
[13] Jacquot T, Guillén R, Fran?ois M, Bourniquel B, Senevat J. Mater Sci Forum, 1996; 228-231: 845
[14] Petigny N, Barberis P, Lemaignan C, Valot Ch, Lallemant M. J Nucl Mater, 2000; 280: 318
[15] Polatidis E, Frankel P, Wei J, Klaus M, Comstock R J, Ambard A, Lyon S, Cottis R A, Preuss M. J Nucl Mater, 2013; 432: 102
[16] Qin W, Nam C, Li H L, Szpunar J A. Acta Mater, 2007; 437: 280
[17] Cox B. J Nucl Mater, 2005; 336: 331
[18] Guo X, Schober T. J Am Ceram Soc, 2004; 87: 746
[19] Fabris S, Paxton A T, Finnis M W. Acta Mater, 2002; 50: 5171
[20] Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[21] Motta A T, Yilmazbayhan A, GomesdaSilva M J, Comstock R J, Was G S, Busby J T, Gartner E, Peng Q J, Jeong Y H, Park J Y. J Nucl Mater, 2007; 371: 61
[22] Yilmazbayhan A, GomesdaSilva M J, Motta A T, Kim H G, Jeong Y H, Park J Y, Comstock R J, Lai B, Cai Z H. In: Allen T R, King P J, Nelson L eds., Proc 12th Int Conf on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Slat Late City: TMS, 2005: 201
[23] Du C X, Peng J C, Li H, Zhou B X. Acta Metall Sin, 2011; 47: 887 (杜晨曦, 彭剑超, 李 慧, 周邦新. 金属学报, 2011; 47: 887)
[24] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limbck M eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM International, 2009: 360
[25] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot, 2009; 30: 589 (周邦新, 李 强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)
[26] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009 (周邦新, 李 强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[27] Zhou B X, Jiang Y R. Nucl Power Eng, 1990; 11: 233 (周邦新, 蒋有荣. 核动力工程, 1990; 11: 233)
[28] Geng J Q, Zhou B X, Yao M Y, Wang J H, Zhang X, Li S L, Du C X. J Shanghai Univ (Nat Sci Ed), 2011; 17: 293 (耿建桥, 周邦新, 姚美意, 王锦红, 张 欣, 李士炉, 杜晨曦. 上海大学学报(自然科学版), 2011; 17: 293)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!