Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 967-975    DOI: 10.11900/0412.1961.2014.00704
Current Issue | Archive | Adv Search |
FUNCTION OF MICROELEMENT Hf IN POWDER METALLURGY NICKEL-BASED SUPERALLOYS
Yiwen ZHANG1,2(),Benfu HU3
1 High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081
2 Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Yiwen ZHANG,Benfu HU. FUNCTION OF MICROELEMENT Hf IN POWDER METALLURGY NICKEL-BASED SUPERALLOYS. Acta Metall Sin, 2015, 51(8): 967-975.

Download:  HTML  PDF(10823KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hafnium (Hf) is one of the most important microelements in powder metallurgy (P/M) superalloy. Hf modifies the microstructure and drastically improves mechanical properties in P/M superalloy. The effect of Hf in a nickel-based P/M superalloy was systematically studied by means of FEG-SEM, TEM, AES, EDS and physical and chemical phase analysis. Hf mainly distributes at interdendritic region of the solidification powder in form of solid solution, which is helpful to reduce prior particle boundary (PPB). Hf facilitates morphology of g′ phase to be unstable and enhances the large cubic g phase to split into smaller ones, so the g′ phase turns into a stable state with a lower energy faster. Hf is mainly distributed in g′ phase and MC carbides, which changes the distribution of element between the g′ phase, MC and g solid solution, which is beneficial to eliminate notch sensitivity and improves overall mechanical properties of the alloy.

Key words:  powder metallurgy superalloy      Hf      MC carbide      g′ phase morphology stability      prior particle boundary (PPB)     
Fund: Supported by International Science & Technology Cooperation Program of China (No.2014DFR50330) and Sino-Russion Intergovernmental Cooperation in Science & Technology Project (No.CR14-20)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00704     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/967

Fig.1  TEM image (a) and indexed SAED of MC′ (inset) and its EDS result (b) in FGH97 powder with 0.3%Hf
Fig.2  OM images of FGH97 alloys without (a) and with 0.30%Hf (b) after hot isostatic pressing (PPB—prior particle boundary)
Fig.3  TEM image (a) and indexed SAED of MC (inset) and its EDS result (b) in FGH97 alloy without Hf after hot isostatic pressing
Hf content g MC g M3B2
0.16 84.4 7.5 6.9 1.2
0.30 85.0 8.0 5.0 2.0
0.58 87.1 8.3 3.3 1.3
0.89 85.4 10.1 3.0 1.5
Average 85.5 8.5 4.5 1.5
Table 1  Distribution of Hf in different phases of standard heat treated FGH97 alloy
Hf content / % R1 R2
0.16 1∶0.089 1∶0.081
0.30 1∶0.094 1∶0.059
0.58 1∶0.095 1∶0.038
0.89 1∶0.118 1∶0.036
Average 1∶0.1 1∶0.05
Table 2  Partition ratios of Hf content in g′ to that in MC carbide and to that in g of standard heat treated FGH97 alloy
Fig.4  SEM images of g’ precipitates in standard heat treated FGH97 alloys with Hf contents of 0 (a), 0.16% (b), 0.30% (c), 0.58% (d) and 0.89% (e) (Arrows in Figs.4c and d indicate the caves in the center of edge along <100> of g’ phase before g’ split)
Fig.5  SEM images of g’ precipitates in the FGH97 alloys with different Hf contents and cooling rates
Fig.6  SEM images of g’ precipitates in the FGH97 alloys with 0.30%Hf aging at 750 ℃ for 100 h (a), 500 h (b) and 1000 h (c)
Fig.7  SEM images of g’ precipitates in FGH97 alloy with 0.30%Hf after aging at 750 ℃ (a), 800 ℃ (b) and 900 ℃ (c) for 100 h
Fig.8  Tensile properties of standard heat treated FGH97 alloy with different Hf contents at 650 ℃ (sb—tensile strength; s0.2—yield strength; d—elongation; y—reduction of cross sectional area)
Fig.9  Stress rupture properties of smooth and notched specimen of standard heat treated FGH97 alloy at 650 ℃ and 1020 MPa with different Hf contents (Notch radius R=0.15 mm)
Fig.10  Elongation after creeping of standard heat treated FGH97 alloy at 750 ℃ and 460 MPa with different Hf contents and aging times
Fig.11  Fatigue crack propagation rate (da/dN) of standard heat treated FGH97 alloy at 650 ℃ with different Hf contents (DK—stress intensity factor range)
Fig.12  Fracture morphologies of fatigue crack growth at initiation region (a) and propagation region (b) for standard heat treated FGH97 alloy at 650 ℃ with 0.30%Hf
[1] Cochardt A W, Township W, County A. US Pat, 3005705, 1961
[2] Academic Committee of the Superalloys CSM. China Superalloys Handbook. Beijing: China Zhijian Publishing House, 2012: 1 (中国金属学会高温材料分会. 中国高温合金手册(上), 北京: 中国质检出版社, 2012: 1)
[3] Davis J R. ASM Specialty Handbook: Nickel, Cobalt and Their Alloys. Materials Park: ASM International, 2000: 203
[4] Evans D J, Eng R D. In: Hausner H H, Antes H W, Smith G D eds., Modern Developments in Powder Metallurgy. Vol.14, Princeton: MPIF and APMI, 1981: 51
[5] Chang M, Koul A K, Cooper C. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc 8th Int Symp on Superalloy, Pennsylvania: TMS, 1996: 677
[6] Miner R V. Metall Trans, 1977; 8A: 259
[7] Larson J M, Volin T E, Larson F G. In: Braun J D, Arrowsmith H W, Mccall J L eds., Microstructural Science. Vol.5, New York: American Elsevier Pub., 1977: 209
[8] Warren R, Ingesten N G, Winberg L, R?nnhult T. Powder Metall, 1984; 27: 141
[9] Radavich J, Furrer D, Carneiro T, Lemsky J. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Proc 11th Int Symp on Superalloy, Pennsylvania: TMS, 2008: 63
[10] Schirra J J, Reynolds P L, Huron E S, Bain K R, David P, Mourer D P. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Proc 10th Int Symp on Superalloy, Warrendale: TMS, 2004: 341
[11] Wlodek S T, Kelly M, Alden D. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Sissinger R D, Klarstrom D L eds., Proc 7th Int Symp on Superalloy, Pennsylvania: TMS, 1992: 467
[12] Locq D, Caron P. J Aerospace Lab, 2011; 3: 1
[13] Hardy M C, Zirbel B, Shen G, Shankar R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Proc 10th Int Symp on Superalloy, Warrendale: TMS, 2004: 83
[14] Starink M J, Reed P A. Mater Sci Eng, 2008; A491: 279
[15] Domingue J A, Boeseh W J, Radavich J F. In: Tien J K, Wlodek S T, Morrow H III eds., Proc 4th Int Symp on Superalloy, Ohio: ASM, 1980: 335
[16] Hu B F, Chen H M, Song D, Li H Y. Acta Metall Sin, 2005; 41: 1042 (胡本芙, 陈焕铭, 宋 铎, 李慧英. 金属学报, 2005; 41: 1042)
[17] Xia P C, Yu J J, Sun X F, Guan H R, Hu Z Q. J Shandong Univ Sci Technol (Nat Sci), 2009; 28: 51 (夏鹏成, 于金江, 孙晓峰, 管恒荣, 胡壮麒. 山东科技大学学报(自然科学版), 2009; 28: 51)
[18] Lifshitz I M, Slyzov V V. J Phys Chem Solids, 1961; 19: 35
[19] Wagner C. Z Elektrochem, 1961; 65: 581
[20] Menzies R G, Bricknell R H, Craven A J. Philos Mag, 1980; 41A: 493
[21] Qiu C L, Attallah M M, Wu X H, Andrews P. Mater Sci Eng, 2013; A564: 176
[22] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1985; 74: 139
[23] Miyazaki T, Imamura H, Mori H, Kozakai T. J Mater Sci, 1981; 16: 1197
[24] Qiu Y Y. J Alloys Compd, 1998; 270: 145
[25] Qiu Y Y. Acta Mater, 1996; 44: 4969
[26] Kaufman M J, Voorhees P W, Johnson W C, Biancaniello F S. Metall Trans, 1989; 20A: 2171
[27] Kotval P S, Venables J D, Calder R W. Metall Trans, 1972; 3: 453
[28] Zhen B L, Zhang S J. Central Iron Steel Res Inst Technol Bull, 1981; 1(1): 65 (甄宝林, 张绍津. 钢铁研究总院学报, 1981; 1(1): 65)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[3] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[4] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[5] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[6] Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY[J]. 金属学报, 2016, 52(5): 549-560.
[7] Yiwen ZHANG,Benfu HU. EFFECTS OF TOPOLOGICALLY CLOSE PACKED μ PHASE ON MICROSTRUCTURE AND PROPERTIES IN POWDER METALLURGY Ni-BASED SUPERALLOY WITH Hf[J]. 金属学报, 2016, 52(4): 445-454.
[8] Yiwen ZHANG,Shoubo HAN,Jian JIA,Jiantao LIU,Benfu HU. EFFECT OF MICROELEMENT Hf ON THE MICRO- STRUCTURE OF POWDER METALLURGY SUPERALLOY FGH97[J]. 金属学报, 2015, 51(10): 1219-1226.
[9] Yunsong ZHAO,Jian ZHANG,Yushi LUO,Dingzhong TANG,Qiang FENG. EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11[J]. 金属学报, 2015, 51(10): 1261-1272.
[10] XIAO Xuan, ZENG Chao, HOU Jieshan, QIN Xuezhi, GUO Jianting, ZHOU Lanzhang. THE DECOMPOSITION BEHAVIOR OF PRIMARY MC CARBIDE IN NICKEL BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ444[J]. 金属学报, 2014, 50(9): 1031-1038.
[11] CHEN Xiaoyan, ZHOU Yizhou, ZHANG Chaowei, JIN Tao, SUN Xiaofeng. EFFECT OF Hf ON THE INTERFACIAL REACTION BETWEEN A NICKEL BASE SUPERALLOY AND A CERAMIC MATERIAL[J]. 金属学报, 2014, 50(8): 1019-1024.
[12] ZHANG Yiwen WANG Fuming HU Benfu. EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ′ PRECIPITATES IN P/M Ni–BASED SUPERALLOY[J]. 金属学报, 2012, 48(8): 1011-1017.
[13] NING Yongquan YAO Zekun. RECRYSTALLIZATION NUCLEATION MECHANISM OF FGH4096 POWDER METALLURGY SUPERALLOY[J]. 金属学报, 2012, 48(8): 1005-1010.
[14] HU Benfu LIU Guoquan WU Kai HU Penghui. MORPHOLOGICAL CHANGES BEHAVIOR OF FAN-TYPE STRUCTURES OF γ' PRECIPITATES IN NICKEL-BASED POWDER METALLURGY SUPERALLOYS[J]. 金属学报, 2012, 48(7): 830-836.
[15] PENG Zhifang, DANG Yingying,PENG Fangfang. EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL[J]. 金属学报, 2012, 48(4): 450-454.
No Suggested Reading articles found!