Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1153-1162    DOI: 10.11900/0412.1961.2014.00113
Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF 1300 MPa GRADE 0.14C-2.72Mn-1.3Si STEEL
ZHAO Zhengzhi1,2, TONG Tingting1,2, ZHAO Aimin1,2, HE Qing1,2, DONG Rui1,2, ZHAO Fuqing1,2
1 Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 Beijing Laboratory of Modern Traffic Metal Materials and Processing Technology, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHAO Zhengzhi, TONG Tingting, ZHAO Aimin, HE Qing, DONG Rui, ZHAO Fuqing. MICROSTRUCTURE, MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF 1300 MPa GRADE 0.14C-2.72Mn-1.3Si STEEL. Acta Metall Sin, 2014, 50(10): 1153-1162.

Download:  HTML  PDF(5850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Multiphase microstructure which contains ferrite, lath martensite, tempered martensite and a specific proportion of retained austenite with chemical composition of Mn between low Mn and medium Mn (0.14C-2.72Mn-1.3Si, mass fraction, %) belong to C-Si-Mn series was produced using continuous annealing simulator. By means of dilatometric simulation, SEM, TEM, EBSD and XRD, microstructures of the steels in different heat treatments were characterized. The results illustrate that the tested steel sheet gained good comprehensive properties with yield strength of 672 MPa, tensile strength up to 1333 MPa, total elongation A50 of 13% after annealing at 800 ℃, which can be explained by the refined microstructure, appropriate proportion of phases and a specific proportion of retained austenite. This work has deeply analyzed the work hardening behavior, discussed the change of instantaneous work hardening rate n. The multi-stage work hardening behavior was studied by modified C-J analysis, and explored the influence of ( is the volume fraction of martensite, is the equivalent diameter of martensite) and fraction of ferrite on it. The results show that n increases with the rise of true strain and then decreases, but has a different feature in the decrease for the different tested steels; the multi-stage work hardening behavior studied by modified C-J analysis shows 2 or 3 stages because of the different martensite volume fraction. The strain scope of combined action of ferrite and martensite △e is affected by the volume fraction of ferrite: △e is small when the temperature is low, and then △e is large when temperature increases, while the △e maybe small when temperature continue to rise. Above all, the high instantaneous work hardening rate which is helpful for the improvement of strength, plasticity and toughness can be attributed to the proportion, morphology and distribution of ferrite and martensite, which is also the consequence of coordination and combination action of each factor.

Key words:  multiphase microstructure      retained austenite      work hardening behavior      uniform elongation      modified C-J analysis     
ZTFLH:  TG113  
Fund: Supported by National Natural Science Foundation of China (No.51271035) and Fundamental Research Funds for the Central Universities (No.FRF-TP-10-001A)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00113     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1153

Fig.1  Schematic of annealing process applied to 0.14C-2.72Mn-1.3Si steel
Fig.2  SEM images of tested steel under annealing temperatures of 760 ℃ (a), 780 ℃ (b), 800 ℃ (c) and 820 ℃ (d)
T / ℃ fF / % fM / % fRA / % Cγ / %
760 65.97 28.17 5.86 1.02
780 50.97 44.49 4.54 1.07
800 26.14 68.11 5.75 1.12
820 25.82 70.33 3.85 1.25
Table 1  Volume fraction of each constituent phase and mass fraction of carbon in retained austenite of tested steel under different annealing temperatures
Fig.3  TEM images of tested steel under annealing temperatures of 760 ℃ (a) and 800 ℃ (b)
Fig.4  Mechanical properties of tested steel under different annealing temperatures
Fig.5  Stress-strain curves of tested steel under different annealing temperatures
Fig.6  XRD spectra of tested steel under different annealing temperatures
Fig.7  Volume fraction of retained austenite and mass fraction of carbon in retained austenite in tested steel under different annealing temperatures
Fig.8  TEM images of retained austenite in tested steel after annealing at 800 ℃
Fig.9  Instantaneous work hardening rate n of tested steel under different annealing temperatures
Fig.10  Plots of the work hardening behavior of the tested steel obtained by using the modified C-J analysis (mI, mII and mIII indicate the stress exporents of stages I, II and III, respectively)
Fig.11  EBSD images of quality maps (a, c) and inverse pole figure (IPF) maps (b, d) for tested steel annealed at 760 ℃ (a, b) and 800 ℃ (c, d)
T / ℃ mI mII mIII etr1 / %
(mI →mII)
etr2 / %
(mII→mIII)
760 2.9 2.0 6.7 0.9 1.8
780 2.6 3.0 8.0 0.8 1.6
800 - 2.8 8.0 - 1.3
820 - 3.3 8.7 - 1.3
Table 2  Stress exponents and strain at the transition points in deformation stages of tested steels by the modified C-J analysis
T / ℃ dF
μm
dM
μm
f M / d M
(%·μm-1)1/2
nmin nmax nmax-nmin
760 4.6 0.23 11.07 0.38 0.58 0.20
780 3.7 0.51 9.34 0.46 0.62 0.16
800 2.2 0.82 9.11 0.47 0.63 0.16
820 1.3 1.42 7.04 0.54 0.64 0.10
Table 3  Equivalent grain size of tested steel after annealing and the extreme values of n
Fig.12  Effects of ferrite volume fraction on strain scope of combined action of ferrite and martensite △e in tested steel (Dotted line indicates the tendency of △e when continue to lower the volume fraction of ferrite)
  
[1] Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311
[2] Matsumura O, Sakuma Y, Takechi H. Scr Metall, 1987; 21: 1301
[3] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775
[4] Bouaziz O, Guelton N. Mater Sci Eng, 2001 A319-321: 246
[5] Barnett M R. Mater Sci Eng, 2007; A464: 1
[6] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[7] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[8] Jiang H T, Tang D, Mi Z L, Chen Y L. J Univ Sci Technol Beijing, 2010; 32: 201
(江海涛, 唐 荻, 米振莉, 陈雨来. 北京科技大学学报, 2010; 32: 201)
[9] Nouri A, Saghafian H, Kheirandish S. J Iron Steel Res Int, 2010; 17(5): 44
[10] Fan Y, Wang M L, Zhang H, Tao H B, Zhao P, Li S Q. J Univ Sci Technol Beijing, 2013; 35: 607
(范 倚, 王明林, 张 慧, 陶红标, 赵 沛, 李士琦. 北京科技大学学报, 2013; 35: 607)
[11] Zhong N, Wang X D, Wang L, Rong Y H. Mater Sci Eng, 2009; A506: 111
[12] Li Z, Zhao A M, Tang D, Mi Z L, Jiao D H. J Univ Sci Technol Beijing, 2012; 34: 132
(李 振, 赵爱民, 唐 荻, 米振莉, 焦殿辉. 北京科技大学学报, 2012; 34: 132)
[13] Zhang L Y, Wu D, Li Z. J Iron Steel Res Int, 2012; 19(2): 42
[14] Koh-ichi S, Daiki F, Nobuo Y. Procedia Eng, 2010; 2: 359
[15] Speich G R, Demarest V A, Miller R L. Metall Trans, 1981; 12A: 1419
[16] Sayed A A, Kheirandish Sh. Mater Sci Eng, 2012; A532: 21
[17] Rosenberg G, Sinaiová I, Juhar Ľ. Mater Sci Eng, 2013; A582: 347
[18] Yan S, Liu X H, Liu W J, Lan H F, Wu H Y. Acta Metall Sin, 2013; 49: 917
(闫 述, 刘相华, 刘伟杰, 蓝慧芳, 吴红艳. 金属学报, 2013; 49: 917)
[19] Wang C Y, Shi J, Cao W Q, Dong H. Acta Metall Sin, 2011; 47: 720
(王存宇, 时 捷, 曹文权, 董 瀚. 金属学报, 2011; 47: 720)
[20] Mohammad R A, Ekrami A. Mater Sci Eng, 2008; A477: 30
[21] Kang Y L, Kuang S, Yin X D. Automob Technol Mater, 2006; (5): 1
(康永林, 邝 霜, 尹显东. 汽车工艺与材料, 2006; (5): 1)
[22] Ren Y Q, Xie Z J, Shang C J. Acta Metall Sin, 2012; 48: 1074
(任勇强, 谢振家, 尚成嘉. 金属学报, 2012; 48: 1074)
[23] Li Y L. J Chongqing Univ (Nat Sci), 2001; 24(3): 58
(李玉兰. 重庆大学学报(自然科学版), 2001; 24(3): 58)
[24] Colla V, Sanctis D M, Dimatteo A. Metall Mater Trans, 2009; 40: 2557
[25] Nie W J, Shang C J, Guan H L, Zhang X B, Chen S H. Acta Metall Sin, 2012; 48: 298
(聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧. 金属学报, 2012; 48: 298)
[26] Zhao Z Z, Ye J Y, Wang Z G, Zhao A M. J Shenyang Univ Technol, 2013; 35: 36
(赵征志, 叶洁云, 汪志刚, 赵爱民. 沈阳工业大学学报, 2013; 35: 36)
[27] Seyedrezai H, Pilkey A K, Boyd J D. Mater Sci Eng, 2014; A594: 178
[28] Mazinani M, Poole W J. Metall Mater Trans, 2007; 38A: 328
[29] Lanzillotto C A N, Pickering F B. Met Sci, 1982; 16: 371
[30] Ashby M F. Philos Mag, 1966; 14: 1157
[31] Ashby M F. Philos Mag, 1970; 21: 399
[1] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[2] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[3] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[4] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[5] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[6] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[7] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[8] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[10] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[11] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[12] Ke ZHANG,Qilong YONG,Xinjun SUN,Zhaodong LI,Peilin ZHAO. EFFECT OF COILING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF Ti-V-Mo COMPLEX MICROALLOYED ULTRA-HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(5): 529-537.
[13] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[14] Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS[J]. 金属学报, 2015, 51(5): 527-536.
[15] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
No Suggested Reading articles found!