Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (6): 435-442    DOI: 10.11901/1005.3093.2018.626
  研究论文 本期目录 | 过刊浏览 |
新型热处理调控Al-Cu-Mg合金残余应力的工艺和机理
马文静1,陈志国1,2(),李鸿娟2,袁珍贵1,郑子樵2()
1. 中南大学材料科学与工程学院 长沙 410083
2. 湖南人文科技学院材料工程系 娄底 417000
Process and Mechanism of Novel Heat Treatment for Controlling Residual Stress in Al-Cu-Mg Alloy
Wenjing MA1,Zhiguo CHEN1,2(),Hongjuan LI2,Zhengui YUAN1,Ziqiao ZHENG2()
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Department of Materials Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China
引用本文:

马文静,陈志国,李鸿娟,袁珍贵,郑子樵. 新型热处理调控Al-Cu-Mg合金残余应力的工艺和机理[J]. 材料研究学报, 2019, 33(6): 435-442.
Wenjing MA, Zhiguo CHEN, Hongjuan LI, Zhengui YUAN, Ziqiao ZHENG. Process and Mechanism of Novel Heat Treatment for Controlling Residual Stress in Al-Cu-Mg Alloy[J]. Chinese Journal of Materials Research, 2019, 33(6): 435-442.

全文: PDF(8658 KB)   HTML
摘要: 

对Al-Cu-Mg合金进行一种能消减残余应力的新型热处理,使用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射等手段分析残余应力并测试力学性能,研究了这种合金的微观组织结构和性能。结果表明:新型热处理使Al-Cu-Mg合金的残余应力消减率达到92.7%(与固溶态铝合金相比),并得到优良的强塑性配合(屈服强度达到463.6 MPa,抗拉强度达到502.5 MPa,伸长率达到12.7%)。微观组织的分析结果表明:在进行新型热处理的合金中S'相比用传统热处理的更为细小、分布更均匀,由S'相析出的共格应力场与淬火残余应力场叠加使合金残余应力大幅度降低,使合金的综合性能较高。

关键词 金属材料Al-Cu-Mg新型热处理残余应力力学性能显微组织    
Abstract

The influence of a novel heat treatment process for reducing residual stress on the microstructure evolution and mechanical properties of Al-Cu-Mg alloy was investigated by means of transmission electron microscope, scanning electron microscope, X-ray diffractometer and tensile test. The results show that the residual stress reduction rate of Al-Cu-Mg alloy (compared with the solid solution treated one) reaches 92.7% by the novel heat treatment, while an excellent combination of strength and plasticity was acquired. As a result, the yield strength, ultimate tensile strength and the elongation rate of the alloy can reach 463.6 MPa, 502.5 MPa and 12.7% respectively. TEM observations reveal that the S′ precipitates are fine and uniformly distributed in the microstructure after the novel heat treatment. The synergistic effect of the coherency stress field produced by these S' phases and the quenching residual stress field may result in a significant reduction of the residual stress, which gives rise to the high comprehensive properties of Al-Cu-Mg alloy.

Key wordsmetallic materials    Al-Cu-Mg    novel heat treatment    residual stresses    mechanical properties    microstructure
收稿日期: 2018-10-23     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51011120052)
作者简介: 马文静,女,1992年生,硕士生
CuMgMnFeSiAl
4.21.50.60.090.06Bal.
表1  合金的化学成分
Sample nameSolution heat treatmentQuenching mediaPre-deformationImmersion liquid nitrogenReheating mediumAging
ST495℃/1 hwater 20℃----
T6495℃/1 hwater 20℃---190℃/12 h
T8(1.5%)495℃/1 hwater 20℃1.5%--190℃/10 h
T8(3%)495℃/1 hwater 20℃3%--190℃/10 h
PU(1.5/200)495℃/1 hwater 20℃1.5%-196℃/2 h200℃/5 min190℃/10 h
PU(3/150)495℃/1 hwater 20℃3%-196℃/2 h150℃/5 min190℃/10 h
PU(3/200)495℃/1 hwater 20℃3%-196℃/2 h200℃/5 min190℃/10 h
表2  热处理工艺参数
图1  新型热处理的工艺流程
图2  不同状态下合金的残余应力
图3  与固溶态合金相比残余应力的消减率
sample nameσ0.2/MPaσb/MPaδ/%
ST15830519.2%
T6246.6367.316.5%
T8(1.5%)414.545210.2%
T8(3%)439.6472.59%
PU(1.5/200)370.8409.413%
PU(3/150)463.6502.512.7%
PU(3/200)354.8391.213.4%
表3  不同状态下合金的拉伸力学性能
图4  不同状态下合金的XRD谱
Sample name(111)(200)(220)(311)
T8(3%)56.910029.629.8
PU(3/150)4.610017.46.9
PU(3/200)7.610025.516.9
表4  不同状态下合金XRD相对衍射峰强度
图5  合金试样的拉伸断口形貌和典型第二相粒子的EDS谱
图6  不同制度热处理后合金的显微组织及对应的衍射斑
[1] Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524 [J]. Materials & Design, 2002, 23(2): 129
[2] Ren J K, Chen Z G, Huang Y J, et al. Effect of new thermo-mechanical treatment on microstructure and properties of 2E12 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(03): 643
[2] (任杰克, 陈志国, 黄裕金等. 新型热机械处理对2E12铝合金显微组织与性能的影响 [J].中国有色金属学报, 2014, 24(03): 643)
[3] Chen Y Q, Pan S P, Zhou M Z, et al. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy [J]. Materials Science and Engineering: A, 2013, 580: 150
[4] Garcia C, Lotz T, Martinez M, et al. Fatigue crack growth in residual stress field [J]. International Journal of Fatigue, 2016, 87: 326
[5] Ko D H, Ko D C, Lim H J, et al. Prediction and measurement of relieved residual stress by the cryogenic heat treatment for Al6061 alloy: mechanical properties and microstructure [J]. Journal of Mechanical Science and Technology, 2013, 27(7): 1949
[6] Pouget G, Reynolds A P. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds [J]. International Journal of Fatigue, 2008, 30(3): 463
[7] Yuan W J, Wu Y X. Mechanics about eliminating residual stress of aluminum alloy thic-ken-plates based on pre-stretching technology [J]. Journal of Central South University (Science and Technology), 2011, 42(8): 2303
[7] (袁望姣, 吴运新. 基于预拉伸工艺的铝合金厚板残余应力消除机理 [J]. 中南大学学报(自然科学版), 2011, 42(08): 2303)
[8] Chen Z G, Ren J K, Zhang J S, et al. Regulation Mechanism of Novel Thermomechanical Treatment for Microstructure and Properties of 2E12 Aluminum Alloy [J]. Rare Metal Materials and Engineering, 2015, 44(10): 2341
[9] Prime M B, Hill M R. Residual stress, stress relief, and inhomogeneity in aluminum plate [J]. Scripta Materialia, 2002, 46(1): 77
[10] Robinson J S, Tanner D A. Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments [J]. Materials Science and Technology, 2003, 19(4): 512
[11] Simencio E C A, Canale L C F, Totten G E. Uphill quenching of aluminium: a process overview [J]. International Heat Treatment and Surface Engineering, 2011, 5(1): 26
[12] Robinson J S, Tanner D A, Truman C E. 50th Anniversary Article: The Origin and Management of Residual Stress in Heat-treatable Aluminium Alloys [J]. Strain, 2014, 50(3): 185
[13] Lin F, Wang H M, Qin G H, et al. Investigation on residual stresses in pre-stretching process of aluminum alloy thick plate based on material non-uniformity [J]. Key Engineering Materials, 2016, 693
[14] Lim H J, Ko D H, Ko D C,et alReduction of residual stress and improvement of dimensional accuracy by uphill quenching for Al6061 tube[J]. Metallurgical and Materials Transactions B,2014, 45(2): 472
[15] Lados D A, Apelian D, Wang L. Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: Mechanisms and effects on static and dynamic properties [J]. Materials Science and Engineering: A, 2010, 527(13-14): 3159
[16] Chen D, Li W X. Cryogenic treatment of Al and Al alloys [J]. The Chinese Journal of Nonferrous Metals. 2000, (06): 891
[16] (陈 鼎, 黎文献. 铝和铝合金的深冷处理 [J]. 中国有色金属学报, 2000, (06): 891)
[17] Feng Z Q, Yang Y Q, Huang B, et al. Precipitation process along dislocations in Al-Cu-Mg alloy during artificial aging [J]. Materials Science and Engineering: A, 2010, 528(2): 706
[18] Ringer S P, Hono K, Polmear I J, et al. Precipitation proeesses during the early stage of aging in Al-Cu-Mg alloys. Applied Surfaee Scienee, 1996, 94-95: 253
[19] Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys [J]. Acta Materialia, 2007, 55(3): 933
[20] Dong Y B, Shao W Z, Jiang J T, et al. Minimization of residual stress in an Al-Cu alloy forged plate by different heat treatments [J]. Journal of Materials Engineering and Performance, 2015, 24(6): 2256
[21] Quan L W, Gang Z, Sam G A O, et al. Effect of pre-stretching on microstructure of aged 2524 aluminium alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 1957
[22] Kim W J, Chung C S, Ma D S, et al. Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging [J]. Scripta Materialia, 2003, 49(4): 333
[23] Wang Y, Peng T, Zhang M C. Micro-mechanisms of quenching residual stress reducti- onfor 2A02 aluminum alloy under aging treatment [J]. Transactions of Materialsand Heat Treatment. 2015, 36(06): 65
[23] (王 岩, 彭 桃, 张麦仓. 时效热处理消减2A02铝合金淬火残余应力的微观机理 [J]. 材料热处理学报, 2015, 36(06): 65)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.