Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 32-40    
  论文 本期目录 | 过刊浏览 |
使用SO2/Air/N2气氛作为纯Mg及#br#AZ91D合金的熔炼保护*
王先飞 熊守美
(清华大学材料学院, 清华大学汽车安全与节能国家重点实验室, 北京 100084)
USE OF SO2/AIR/N2 COVER GASES FOR THE PROTECTION ON MOLTEN MAGNESIUM #br#AND AZ91D ALLOY
WANG Xianfei, XIONG Shoumei
State Key Laboratory of Automotive Safety and Energy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
全文: PDF(10240 KB)   HTML
摘要: 

利用3种实验方法, 研究了SO2/Air/N2气氛对纯Mg及AZ91D合金熔体的保护行为, 运用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、Auger电子能谱仪(AES)和X射线光电子能谱仪(XPS)分析了形成的表面膜的相组成、微观组织形貌和生长过程, 结合热力学计算讨论了表面膜的生长与保护机理, 并考查了表面膜的稳定性. 研究表明: 在SO2/Air/N2气氛中, 保护性表面膜由MgO, MgS和MgSO4混合组成, MgSO4是热力学稳定相, 它的形成至关重要. 当采用SO2/Air/N2气氛为保护气氛且SO2含量一定时, Air含量不能过高也不能过低.

关键词 Mg镁合金气体保护SO2表面膜    
Abstract

Molten magnesium and AZ91D alloy oxidize rapidly during casting process, sulfur dioxide (SO2) mixed with carrier gases can be used to protect the melt by reacting with the melt to form a coherent protective film on the melt surface. In this work, the films formed in SO2/Air/N2 cover gases were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), the formation process and the protective mechanism of the surface film were also discussed. The results show that the protective film is composed of MgO, MgS and MgSO4. MgS increases the pilling and bedworth ratio of the surface film and enhances its protective capability. MgSO4 is the thermodynamically stable phase and its formation is important for the formation of protective film. When SO2/Air/N2 cover gases are used to protect the melt and SO2 content is fixed, air content should be controlled within a certain range.

Key wordsmagnesium    magnesium alloy    gas protection    SO2    surface film
收稿日期: 2013-07-08     
ZTFLH:  TG146.2  
基金资助:

*国家自然科学基金项目51275269, 国家科技支撑计划重点项目2011BAE22B02和科技部国际科技合作计划项目
2010DFA72760资助

Corresponding author: XIONG Shoumei, professor, Tel: (010)62773793,
E-mail: smxiong@tsinghua.edu.cn   
作者简介: 王先飞, 男, 1986年生, 博士生
DOI: 10.3724/SP.J.1037.2013.00386

引用本文:

王先飞, 熊守美. 使用SO2/Air/N2气氛作为纯Mg及#br#AZ91D合金的熔炼保护*[J]. 金属学报, 2014, 50(1): 32-40.
WANG Xianfei, XIONG Shoumei. USE OF SO2/AIR/N2 COVER GASES FOR THE PROTECTION ON MOLTEN MAGNESIUM #br#AND AZ91D ALLOY. Acta Metall Sin, 2014, 50(1): 32-40.

链接本文:

https://www.ams.org.cn/CN/      或      https://www.ams.org.cn/CN/Y2014/V50/I1/32

[1] Jafari H, Idris M H, Ourdjini A. Corros Sci, 2011; 53: 655
[2] Bartos S C. In: Hryn J ed., Magnesium Technology 2001, Warrendale, PA: TMS, 2001: 43
[3] Ricketts N J, Cashion S P, Bailey R. In: Dahle A ed., Proc 1st Int Light Metals Technology Conference, Brisbane, Australia: CAST, 2003: 275
[4] Mirak A, Davidson C J, Taylor J A. Corros Sci, 2010; 52: 1992
[5] Fruehling J W. PhD Dissertation, University of Michigan, America, 1970
[6] Pettersen G, ?vrelid E, Tranell G, Fenstad J, Gjestland H. Mater Sci Eng, 2002; A332: 285
[7] Aarstad K. PhD Dissertation, Norwegian Universtity of Science and Technology, Norway, 2004
[8] Ha W, Kim Y J. J Alloys Compd, 2006; 422: 208
[9] Argo D, Lefebvre M. In: Kaplan H I ed., Magnesium Technology 2003, San Diego, USA: TMS, 2003: 15
[10] Schubert W, Gjestland H. In: Kainer K U ed., Magnesium Alloy and Their Applications, Weinheim, Chichester: Wiley, 2000: 761
[11] Cashion S P. PhD Dissertation, University of Queensland, Australia, 1998
[12] Cashion S P, Ricketts N J. In: Kaplan H, Hym J, Clow B eds., Magnesium Technology 2000, Warrendale, PA: TMS, 2000: 77
[13] Moulder J F, Stickle W F, Sobol P E, Bomben K D. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, MN: Perkin-Elmer, 1992: 45, 53
[14] Ardizzone S, Bianchi C L, Fadoni, M, Vercelli B. Appl Surf Sci, 1997; 119: 253
[15] Wang X M, Zeng X Q, Zhou Y, Wu G S, Yao S S, Lai Y J. J Alloys Compd, 2008; 460: 368
[16] Barin J, Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springer Verlag, 1973; (Suppl): 1977
[17] Liu M, Shih D S, Parish C, Atrens A. Corros Sci, 2012; 54: 139
[18] Pilling N B, Bedworth R E. J Inst Met, 1923; 28: 534
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[3] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[4] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[5] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[6] 何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
[7] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[8] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[9] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[10] 宋贵宏,李贵鹏,刘倩男,杜昊,胡方. 溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能[J]. 金属学报, 2019, 55(11): 1469-1476.
[11] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[12] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[13] 向雪梅, 赖玉香, 刘春辉, 陈江华. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变[J]. 金属学报, 2018, 54(9): 1273-1280.
[14] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[15] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.