Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 674-684    DOI: 10.3724/SP.J.1037.2014.00041
  本期目录 | 过刊浏览 |
20SiMn钢在恒定pH值的碳酸盐溶液中的腐蚀行为*
曹凤婷, 魏洁, 董俊华(), 柯伟
中国科学院金属研究所腐蚀与防护国家重点实验室, 沈阳110016
CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE
CAO Fengting, WEI Jie, DONG Junhua(), KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

曹凤婷, 魏洁, 董俊华, 柯伟. 20SiMn钢在恒定pH值的碳酸盐溶液中的腐蚀行为*[J]. 金属学报, 2014, 50(6): 674-684.
Fengting CAO, Jie WEI, Junhua DONG, Wei KE. CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE[J]. Acta Metall Sin, 2014, 50(6): 674-684.

全文: PDF(2247 KB)   HTML
摘要: 

采用电化学技术(动电位极化曲线, 自腐蚀电位, EIS, Mott-Schottcky(MS)曲线及循环伏安曲线)和表面分析方法(SEM和原位Raman 光谱)研究了空冷20SiMn钢在pH值均为10.64的3种浓度的碳酸盐缓冲液和浓度恒定为0.437×10-3 mol/L的NaOH溶液中的腐蚀行为. 结果表明, 20SiMn钢在NaOH溶液中发生了均匀腐蚀, 经Fe(OH)2转变为最终产物a-Fe2O3g-FeOOH; 在低浓度碳酸盐缓冲液中发生了局部腐蚀, 经绿锈GRs得到最终腐蚀产物a-Fe2O3b-FeOOH; 在高浓度碳酸盐缓冲液中发生了钝化, 并且受可溶性离子Fe(CO3)22-的影响, 钝化膜的耐蚀性随碳酸盐总浓度的升高存在极值.

关键词 20SiMn钢碳酸盐缓冲液钢筋电化学Raman光谱腐蚀    
Abstract

The aggressive ions, such as Cl- and SO42-, as well as the carbonation caused by CO2 from the air are two main reasons for the depassivation of steel rebar in reinforcement concrete. Under normal conditions, the pH value of concrete pore solution is taken as the criterion for determining whether the corrosion of steel occurs or not. However, carbonation process results not only in the decrease of the pH value of concrete pore solution, but also in the accession of HCO3- and CO32-. It is demonstrated that these two ions are able to influence the corrosion behaviors of steel rebar. Additionally, the failure of reinforcement concrete is a time consuming process, so the corrosion evolution laws of steel at the presence of HCO3- and CO32- is necessary to study systemically. Nevertheless, little relative work has been done so far. In this work, the electrochemical behavior of 20SiMn steel in three different content carbonate buffer solutions (0.01, 0.05 and 0.5 mol/L) was studied using electrochemical techniques (polarization curves, free corrosion potential measurements, EIS, Mott-Schottcky (MS) curves and cycle voltage curves) and surface analysis techniques (SEM and in situ Raman spectroscopy), compared with that in NaOH solution (0.437×10-3 mol/L ). These four solutions are of the same pH value 10.64. The results indicated that 20SiMn steel was in active corrosion state in NaOH solution and low content carbonate solution, while it was in passive state in high content carbonate solutions. In NaOH solution, 20SiMn steel was destroyed by uniform corrosion and the corrosion products were a-Fe2O3 and g-FeOOH, transformed from Fe(OH)2. In 0.01 mol/L carbonate solution, 20SiMn steel was destroyed by localized corrosion, and the final products were a-Fe2O3 and b-FeOOH, developed from the intermediate products GRs (green rusts). The passive film formed on 20SiMn steel was more resistive in 0.05 mol/L carbonate solution than that in 0.5 mol/L due to the formation of soluble complex anion Fe(CO3)22- in latter solution. There was a maximum corrosion resistance of the passive film with the increase of carbonate content.

Key words20SiMn steel    carbonate buffer solution    steel rebar    electrochemistry    Raman spectroscopy    corrosion
收稿日期: 2014-01-20     
ZTFLH:  TG174  
基金资助:*国家自然科学基金资助项目51131007
作者简介: null

作者简介: 曹凤婷, 女, 1988年生, 博士生

图1  20SiMn钢在NaOH溶液和不同浓度碳酸盐缓冲液中浸泡7 d后表面的微观形貌
图2  20SiMn钢在0.437×10-3 mol/L NaOH和0.01 mol/L碳酸盐缓冲液中浸泡7 d的原位Raman光谱
图3  20SiMn钢打磨后的样品在0.01 mol/L 碳酸盐缓冲液和0.437×10-3 mol/L NaOH溶液中浸泡不同时间去除腐蚀产物后的腐蚀形貌
图4  20SiMn钢在4种溶液中的动电位极化曲线
图5  20SiMn钢在4种溶液中的自腐蚀电位
图6  20SiMn钢在4种溶液中浸泡7 d的EIS
图7  4种溶液中的EIS等效电路
Immerse time
d
Rs
Ω·cm2
Q1
Ω-1·cm-2·sn
n1 R1
Ω·cm2
Qdl
Ω-1·cm-2·sn
nct Rct
Ω·cm2
1 33.19 0.00103 0.8726 52.35 7.025×10-4 0.8473 1103
2 42.55 0.00175 0.9408 36.88 7.125×10-4 0.8522 1454
3 78.33 0.09831 1 263.3 7.515×10-4 0.827 1207
4 90.28 0.00237 0.5975 1620 0.00415 1 312
5 67.82 0.00187 0.6404 1057 0.0057 1 161
6 70.91 0.00124 1 8.396 0.00154 0.7005 1186
7 34.11 1.937×10-8 0.8873 106.2 0.00175 0.6847 1095
表1  0.437×10-3 mol/L NaOH溶液中的EIS拟合结果
Immerse time
d
Rs
Ω·cm2
Qct
Ω-1·cm-2·sn
nct Rct
Ω·cm2
W
Ω-1·cm-2·s0.5
1 28.65 8.905×10-4 0.7949 2348 0.00955
2 59.61 0.001 0.7961 2027 0.00811
3 68.75 9.561×10-4 0.7811 1776 0.01129
4 58.43 9.039×10-4 0.7756 1965 0.00694
5 75.14 9.633×10-4 0.7520 2186 0.00623
6 56.39 9.285×10-4 0.7552 2280 0.00439
7 64.84 8.534×10-4 0.7465 2371 0.00193
表2  0.01 mol/L 碳酸盐缓冲液中的EIS 拟合结果
图8  0.437×10-3 mol/L NaOH和不同浓度碳酸盐缓冲液中Rct及R1随浸泡时间变化曲线
Immerse time
d
Rs
Ω·cm2
Q1
Ω-1·cm-2·sn
n1 R1
Ω·cm2
Qct
Ω-1·cm-2·sn
nct Rct
Ω·cm2
1 29.71 4.796×10-5 0.9682 1.004×106 1.034×10-4 0.8553 24940
2 35.20 4.731×10-5 0.9819 1.145×106 8.242×10-5 0.8585 36300
3 30.27 4.414×10-5 0.9718 1.256×106 8.412×10-5 0.8653 36490
4 27.96 4.642×10-5 0.9641 1.078×106 8.349×10-5 0.8648 34270
5 26.59 4.457×10-5 0.9794 1.196×106 7.351×10-5 0.8660 44470
6 33.17 4.354×10-5 0.9792 1.236×106 7.237×10-5 0.8653 46890
7 24.01 4.182×10-5 0.9758 1.254×106 7.383×10-5 0.8678 45270
表3  0.05 mol/L 碳酸盐缓冲液中的EIS 拟合结果
Immerse time
d
Rs
Ω·cm2
Q1
Ω-1·cm-2·sn
n1 R1
Ω·cm2
Qct
Ω-1·cm-2·sn
nct Rct
Ω·cm2
1 3.222 2.339×10-4 0.8779 57790 9.592×10-5 0.9111 3975
2 4.804 2.320×10-4 0.8754 66880 9.332×10-5 0.9016 5297
3 5.499 2.218×10-4 0.8802 72840 9.025×10-5 0.9006 6201
4 3.539 2.133×10-4 0.8883 75630 8.630×10-5 0.9058 6585
5 10.86 8.927×10-5 0.9358 2.946×105 1.225×10-4 0.9140 1.310×104
6 10.53 7.277×10-5 0.9365 4.733×105 1.384×10-4 0.9088 1.257×104
7 10.03 7.713×10-5 0.9354 4.102×105 1.335×10-4 0.9146 1.270×104
表4  0.5 mol/L 碳酸盐缓冲液中的EIS 拟合结果
图9  20SiMn钢在0.05和0.5 mol/L 碳酸盐缓冲液中浸泡7 d后钝化膜的MS曲线
图10  20SiMn钢在4种溶液中的循环伏安曲线
[1] Ahmd S. Cem Concr Compos, 2003; 25: 459
[2] Biezma M V, San Cristobal J R. Corros Eng Sci Technol, 2005; 40: 344
[3] Page C L, Treadaway K W J. Nature, 1982; 297: 109
[4] Page C L, Ngala V T, Page M M. Mag Concr Res, 2000; 52: 25
[5] Gaidis J M. Cem Concr Compos, 2004; 26: 181
[6] Dantan N, Höhse M, Karasyov A A, Wolfbeis O S. Tm-Technisches Messen, 2007; 74: 211
[7] Singh D D N, hosh R G. Surf Coat Technol, 2006; 201: 90
[8] Xu H, Liu Y, Chen W, Du R G, Lin C J. Electrochim Acta, 2009; 54: 4067
[9] Xue H B, Cheng Y F. JMEPEG, 2010; 19: 1311
[10] Fu A Q, Cheng Y F. Corros Sci, 2010; 52: 612
[11] Li J B, Zuo J E. Chin J Chem, 2008; 26: 1799
[12] Rangel C M, Fonseca I T, Leião R A. Electrochim Acta, 1986; 31: 1659
[13] Rangel C M, Leião R A. Electrochim Acta, 1989; 34: 255
[14] Thomas J G N, Nurse T J, Walker R. Br Corros J, 1970; 5: 85
[15] Huet B, L'Hostis V, Miserque F, Idrissi H. Electrochim Acta, 2005; 51: 172
[16] Valentini C R, Moina C A. Corros Sci, 1985; 25: 985
[17] Davies D H, Burstein G T. Corrosion, 1980; 36: 416
[18] Dong J H, Nishimura T, Kodama T. Mater Res Soc Symp Proc, 2002; 713: 85
[19] Nieuwoudt M K, Comins J D, Cukrowski I. Raman Spectrosc J, 2011; 42: 1335
[20] Lee C T, Odziemkowski M S, Shoesmith D W. J Electrochem Soc, 2006; 153: 33
[21] Nieuwoudt M K, Comins J D, Cukrowski I. Raman Spectroscopy, doi: 10.1002/jrs.2837
[22] Fajardo G, Valdez P, Pacheco J. Constr Build Mater, 2009; 23: 768
[23] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes. New York: Plenum Press, 1980: 316
[24] Li D G, Feng Y R, Bai Z Q, Zhua J W, Zheng M S. Electrochim Acta, 2007; 52: 7877
[25] Castro E B, Valentini C R, Moina C A, Vilche J R, Arvia A J. Corros Sci, 1986; 26: 781
[26] Schrebler Guzmán R S, Vilche J R, Arvía A J. Electrochim Acta 1979; 24: 395
[27] Reffass M, Sabot R, Savall C, Jeannin M, Creus J. Refait P. Corros Sci, 2006; 48: 709
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[4] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[5] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[6] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[7] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[8] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.