Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1445-1451    DOI: 10.3724/SP.J.1037.2013.00520
  论文 本期目录 | 过刊浏览 |
Fe-6.5%Si轧制板材热处理制度工艺的优化
张皓,李慧,杨琨,梁永锋,叶丰
北京科技大学新金属材料国家重点实验室, 北京 100083
OPTIMIZATION OF HEAT TREATMENT PROCESS OF Fe-6.5%Si SHEET
ZHANG Hao, LI Hui, YANG Kun, LIANG Yongfeng, YE Feng
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

张皓,李慧,杨琨,梁永锋,叶丰. Fe-6.5%Si轧制板材热处理制度工艺的优化[J]. 金属学报, 2013, 49(11): 1445-1451.
ZHANG Hao, LI Hui, YANG Kun, LIANG Yongfeng, YE Feng. OPTIMIZATION OF HEAT TREATMENT PROCESS OF Fe-6.5%Si SHEET[J]. Acta Metall Sin, 2013, 49(11): 1445-1451.

全文: PDF(2425 KB)  
摘要: 

研究了热轧Fe-6.5%Si (质量分数)高硅钢薄板在不同温度、不同时间的热处理条件下其组织及合金力学性能的变化.结果表明, 经过热处理的试样具有更好的力学性能,300℃拉伸延伸率比热轧态试样的延伸率(9.09%)高出近1倍,硬度也大幅下降, 有利于后续轧制的进行. 通过对比分析,确定在850℃下保温1 min并在盐水中淬火是较理想的热处理条件,在此条件下处理的Fe-6.5%Si合金板材组织均匀, 塑性提高, 硬度降低,有利于下一步轧制的进行, 并且该条件也大大提高了现有的热处理效率, 满足生产工艺的要求.

关键词 Fe-6.5%Si合金热处理塑性硬度    
Abstract

Fe-6.5%Si (mass fraction) alloy exhibits excellent soft magnetic properties and therefore is very suitable to be used as iron core in high frequency electromotor. However, the room-temperature embrittlement and poor workability limit the practical applications of the alloy and it is hard to be fabricated to thin sheet. It is reported that ultra-thin sheet with 0.05 mm in thickness has been successfully obtained by an advanced technique of stepwise ductilization, including hot, warm and cold rolling processes with intermediate heat treatment. And suitable heat treatment can improve the ductility of this alloy sheet, therefore it plays an important role in this technique. However, the existing heat treatment is time consuming and not suitable for industry. In this work, effects of heat treatment on mechanical properties of the hot-rolled sheet have been investigated in dependence of annealingtemperature and time. The experimental results show that heat treated Fe-6.5%Si sheets have better mechanical properties than those of as hot-rolled sheets. Elongation of heat treated sample is twice as hot-rolled sample's and hardness decreases significantly. Also it is found that heat treatment at  850℃ for 1 min and then quenching in brine provides good ductility and low hardness, which is benefit to the subsequent processes and increases the productivity substantially.

Key wordsFe-6.5%Si alloy    heat treatment    ductility    hardness
收稿日期: 2013-08-26     
基金资助:

国家重点基础研究发展计划资助项目2011CB606304-2

作者简介: 张皓, 男, 1988年生, 硕士生

[1] Bozorth R M.  Ferromagnetism. New York: Van Nostrand Reinhold Company, 1951: 67

[2] He Z Z.  Electrical Steel. Beijing: Metallurgical Industry Press, 1997: 594
(何忠治. 电工钢. 北京: 冶金工业出版社, 1997: 594)
[3] Shin J S, Lee Z H, Lee T D, Lavernia E J.  Scr Mater, 2001; 45: 725
[4] Raviprasad K, Chattopadhyay K.  Acta Metall Mater, 1993; 41: 609
[5] Yelsukov Y P, Barinov V.  Phys Met Metallogr, 1984; 55(2): 119
[6] Ros-Ya\nez T, Houbaert Y, Fischer O, Schneider J.  J Mater Process Technol, 2003; 141: 132
[7] Fish G E, Chang C F, Bye R.  J Appl Phys, 1988; 64: 5370
[8] Fujita K, Namikawa M, Takada Y.  J Mater Sci Technol, 2000; 16: 137
[9] Takada Y, Abe M, Masuda S, Inagaki J.  J Appl Phys, 1988; 64: 5367
[10] Li R, Shen Q, Zhang L M, Zhang T.  J Magn Magn Mater, 2004; 281: 135
[11] Wang W F.  Powder Metall, 1995; 38: 289
[12] Ros-Yanez T, Houbaert Y, Rodriguez V G.  J Appl Phys, 2002; 91: 7857
[13] Barros J, Ros-Yanez T, Vandenbossche L, Dupre L, Melkebeek J,Houbaert Y.  J Magn Magn Mater, 2005; 290-291: 1457
[14] Ishizaka T, Yamabe K, Takahashi T.  J Jpn Inst Met, 1996; 30: 552
[15] Ros-Yanez T, Houbaert Y, Fischer O, Schneider J.  IEEE Trans Magn, 2001; 37: 2321
[16] Liang Y F, Lin J P, Ye F, Wang Y L, Chen G L.  Met Funct Mater, 2010; 17(2): 43
(梁永锋, 林均品, 叶丰, 王艳丽, 陈国良. 金属功能材料, 2010; 17(2): 43)
[17] Lin J P, Ye F, Chen G L, Wang Y L, Liang Y F, Jin J N, Liu Y.  Front Sci, 2007; 1(2): 13
(林均品, 叶丰, 陈国良, 王艳丽, 梁永锋, 金吉男, 刘艳. 前沿科学, 2007; 1(2): 13)
[18] Liu Y, Liang Y F, Ye F, Lin J P, Chen G L.  Spec Steel, 2007; 28(3): 28
(刘艳, 梁永锋, 叶丰, 林均品, 陈国良. 特殊钢, 2007; 28(3): 28)
[19] Fang X S, Liang Y F, Ye F, Lin J P . J Appl Phys, 2012; 111: 0949139)
[20] Liang Y F.  PhD Dissertation, University of Science and Technology Beijing, 2011
(梁永锋. 北京科技大学博士学位论文, 2011)
[21] Liang Y F, Lin J P, Ye F, Wang Y L, Zhang L Q, Chen G L.  Trans Mater Heat Treat, 2009; 30(2): 85
(梁永锋, 林均品, 叶丰, 王艳丽, 张来启, 陈国良. 材料热处理学报, 2009; 30(2): 85)
[22] Shin J S, Bae J S, Kim H J, Lee H M, Lee T D, Lavernia E J, Lee Z H.  Mater Sci Eng,2005; A407: 282
[23] Shin J S, Lee S M, Moon B M, Lee H M, Lee T D, Lee Z H.  Met Mater Int, 2004; 10: 581
[24] Yu J H, Shin J S, Bae J S, Lee Z H, Lee T D, Lee H M, Lavernia E J.Mater Sci Eng, 2001; A307: 29
[25] Zhang Z H, Wang W P, Fu H D, Xie J X.   Mater Sci Eng, 2011; A530: 519
[26] Witting J E, Frommeyer G.  Metall Mater Trans, 2008; 39A: 252
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[9] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[12] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[13] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[14] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[15] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.