Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1177-1184    DOI: 10.3724/SP.J.1037.2013.00219
  论文 本期目录 | 过刊浏览 |
奥氏体不锈钢钎焊界面裂纹形成机制研究
张青科,裴夤崟,龙伟民
郑州机械研究所新型钎焊材料与技术国家重点实验室, 郑州 450001
INVESTIGATIONS ON FORMATION MECHANISMS OF BRAZING CRACKS AT THE AUSTENITIC STAINLESS STEEL/FILLER METAL BRAZING JOINT INTERFACES
ZHANG Qingke, PEI Yinyin, LONG Weimin
State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001
引用本文:

张青科,裴夤崟,龙伟民. 奥氏体不锈钢钎焊界面裂纹形成机制研究[J]. 金属学报, 2013, 49(10): 1177-1184.
ZHANG Qingke, PEI Yinyin, LONG Weimin. INVESTIGATIONS ON FORMATION MECHANISMS OF BRAZING CRACKS AT THE AUSTENITIC STAINLESS STEEL/FILLER METAL BRAZING JOINT INTERFACES[J]. Acta Metall Sin, 2013, 49(10): 1177-1184.

全文: PDF(2513 KB)  
摘要: 

316LN奥氏体不锈钢的钎焊界面裂纹形成机制进行了系统研究.首先以Cu-Si和Ag-Cu-Sn两种含Cu钎料对316LN不锈钢管进行了氩弧钎焊,根据焊后工件的打压泄漏情况, 使用OM和SEM观察了钎焊界面的微观组织和裂纹形貌,并用EDS分析了裂纹内表面成分. 结果显示, 钎焊界面裂纹在母材/钎料界面萌生,沿母材晶界扩展, 裂纹内可检测到钎料中的元素, 且裂纹开始形成于钎料凝固之前.为进一步确定钎焊裂纹产生机制, 进行了316LN不锈钢的Cu-Si钎料浸渍实验,Cu-Si钎料真空钎焊实验, 以及Ag-Sn, Ag-Al钎料和Ni焊丝氩弧钎焊实验,证明了钎料中的低熔点元素沿母材晶界扩散导致的晶界弱化,以及钎焊过程中母材内温度梯度导致的内应力是钎焊界面裂纹发生的必要条件.最后定性描述了钎焊界面裂纹的形成过程, 并讨论了抑制该类裂纹的钎焊工艺.

关键词 氩弧钎焊Cu钎料奥氏体不锈钢钎焊裂纹    
Abstract

The austenitic stainless steels are widely used as structural materials of the workpieces served in severe environments, while the interfacial cracking in brazing joints of the austenitic stainless steels is a drawback limiting their application. Thus far the reports have not comprehensively revealed the formation mechanisms of the brazing cracks. To help solving this problem, formation mechanisms of the interfacial cracks at the 316LN stainless steel/filler metal brazing joints were comprehensively investigated in this study. The 316LN cooling pipes were firstly arc brazed with Cu-Si and Ag-Cu-Sn filler metals. According to the leakage test results of these pipes, microstructures of the brazing joints and the interfacial cracks were observed by OM and SEM, and compositions around the cracks were analyzed by EDS. The results show that the interfacial cracks initiate at the 316LN/filler metals interface and propagate along the grain boundaries of the stainless steel, elements of the filler metals were detected in the cracks, and it is confirmed that the cracks formed before solidification of the filler metals. To further reveal the crack formation mechanisms, verification tests including dipping (1100℃, 30 s) and vacuum-brazing (1100℃, 10 min) of 316LN with Cu-Si filler metal, arc brazing of 316LN with Ag-Al, Ag-Sn and Ni filler metals were conducted. The cracking was not observed at the vacuum-brazed 316LN/Cu-Si joint interface and the arc-brazed 316LN/Ni interface, but the other three brazing joints show similar cracking behaviors with the 316LN/Cu-Si joint. Base on the results, it was predicated that weakening of the grain boundaries in the 316LN induced by GB diffusion of the low melting point elements, and the brazing stress result from the temperature gradient in the 316LN substrate material during the brazing process are necessary formation conditions of the brazing cracks. Cracking at the brazing joint interface are affected by composition of filler metals, heating rate, thermal input, and heat treatment conditions of substrate materials. Brazing techniques were optimized according to the findings, and it was found that occurrence of the cracks can be restrained through decreasing the temperature gradient or avoid to used the low melting point elements-contained filler metals.

Key wordsargon arc brazing    Cu-contained filler metal    austenitic stainless steel    brazing crack
收稿日期: 2013-04-25     
基金资助:

国家重点基础研究发展计划项目2012CB723902和国家高技术研究发展计划项目2012AA040208资助

作者简介: 张青科, 男, 1985年生, 工程师, 博士

[1] Han E H.  Acta Metall Sin, 2011; 47: 769

(韩恩厚. 金属学报, 2011; 47: 769)
[2] Han E H, Wang J Q, Wu X Q, Ke W.  Acta Metall Sin, 2010; 46: 1379
(韩恩厚, 王俭秋, 吴欣强, 柯伟. 金属学报, 2010; 46: 1379)
[3] Sanyasi R, Ali Y A-K.  Weld J, 2010; 89(2): 46
[4] Shankar V, Gill T P S, Mannan S L, Sundaresan S.  Sci Technol Weld Join, 2000; 5(2): 91
[5] Shankar V, Gill T P S, Mannan S L, Sundaresan S.  Sadhana, 2003; 28: 359
[6] Shankar V, Gill T P S, Mannan S L, Terrance A L E, Sundaresan S.  Metall Mater Trans, 2000;31A: 3109
[7] Shankar V, Gill T P S, Mannan S L, Sundaresan S.  Mater Sci Eng, 2003; A343: 170
[8] Shinoda T,~Miyake H, Matsuzaka T, Matsumoto T,~Kanai H.  Mater Sci Technol, 1992; 8: 913
[9] Zhang L T, Wang J Q.  Acta Metall Sin, 2013; 49: 911
(张利涛, 王俭秋. 金属学报, 2013; 49: 911)
[10] Lin S B, Song J L, Yang C L, Ma G C.  Acta Metall Sin, 2009; 45: 1211
(林三宝, 宋建岭, 杨春利, 马广超. 金属学报, 2009; 45: 1211)
[11] Qin G L, Su Y H, Wang S J.  Acta Metall Sin, 2012; 48: 1018
(秦国梁, 苏玉虎, 王术军. 金属学报, 2012; 48: 1018)
[12] Jiang W C, Gong J M, Chen H, Tu S D.  Acta Metall Sin, 2008; 44: 105
(蒋文春, 巩建鸣, 陈虎, 涂善东. 金属学报, 2008; 44: 105)
[13] Savage W F, Nippes E F.  Weld J, 1978; 57(5): 145
[14] Ji J, Jing X G, Zhang W Y.  Trans China Weld Inst, 2004; 25(3): 124
(季杰, 井绪贵, 张文钺. 焊接学报, 2004; 25(3): 124)
[15] Lee H W, Sung J H.  Sci Technol Weld Join, 2005; 10(2): 145
[16] Holbert Jr R K, Dobbins A G, Bennett Jr R K.  Weld J, 1987; 66(8): 38
[17] Radhakrishnan V M.  Sci Technol Weld Join, 2000; 5(1): 40
[18] Li L, Messler Jr R W.  Weld J, 1999; 78(12): 387
[19] Nelson T W, Lippold J C, Lin W, Baeslack W A III.  Weld J, 1997; 76(5): 110
[20] Zacharia T.  Weld J, 1995; 74(1): 164
[21] Neidel A, Riesenbeck S.  J Fail Anal Preven, 2011; 11: 473
[22] Ogawa T, Tsunetomi E.  Weld Res Sup, 1982; 3: 82
[23] Srinivasan G, Divya M, Albert S K, Bhaduri A K, Klenk A, Achar D R G.Weld World, 2010; 54(11-12): R322
[24] Berecz T, Majlinger K, Orbulov I N, Szabo P J.  Mater Sci Forum, 2013; 729: 442
[25] Atabaki M M, Wati J N, Idris J.  Weld J, 2013; 92(3): 57
[26] Liu W, Tian Y, Zhang X.  Weld J, 1994; 73(9): 297
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[4] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[6] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[7] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[8] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[10] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[11] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[12] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[13] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.