Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 939-945    DOI: 10.3724/SP.J.1037.2013.00116
  论文 本期目录 | 过刊浏览 |
烧结细晶Al的微观组织与力学性能研究
乐国敏,Godfrey Andrew,刘伟
清华大学材料学院先进材料教育部重点实验室, 北京 100084
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SINTERED FINE-GRAINED Al
LE Guomin, Godfrey Andrew, LIU Wei
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University,Beijing 100084
引用本文:

乐国敏,Godfrey Andrew,刘伟. 烧结细晶Al的微观组织与力学性能研究[J]. 金属学报, 2013, 49(8): 939-945.
LE Guomin, Godfrey Andrew, LIU Wei. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SINTERED FINE-GRAINED Al[J]. Acta Metall Sin, 2013, 49(8): 939-945.

全文: PDF(730 KB)  
摘要: 

利用EBSD, TEM和压缩测试研究了平均晶粒尺寸为0.8—5 μm的烧结细晶Al的微观组织与力学性能.研究表明, 随着晶粒尺寸的减小, 烧结细晶Al的力学行为发生转变: 平均晶粒尺寸小于1.3μm时,由于可动位错源的缺失, 细晶Al的应力--应变曲线表现出明显屈服降落现象; 平均晶粒尺寸减小至0.8μm时,细晶Al在变形过程中晶粒内部很少形成或不形成位错界面, 其应力-应变曲线表现为屈服后缺乏加工硬化.平均晶粒尺寸为5.2μm的细晶Al相比于常规粗晶Al来说, 由于晶界作用增加以及氧化物颗粒的影响,其位错界面取向差角的演变速率要更快. 总体来说, 由于氧化物颗粒的贡献,烧结细晶Al的强度要高于常规形变退火方法制备的具有相同平均晶粒尺寸的细晶Al,对于平均晶粒尺寸小于1.3μm的细晶Al, 位错源缺失也起着一定的强化作用.

关键词 放电等离子体烧结细晶Al微观组织力学性能    
Abstract

Fine-grained metals have attracted much interest due to the possibility to obtain both high strength and high ductility. Studies of the deformation mechanisms in fine-grained metals are therefore important, and can also help fill a gap in knowledge between nano-grained metals and conventional coarse-grained metals, which is an area of both scientific and industrial interest. For such an investigation it is very important to use a starting material with a simple microstructure. For this purpose spark plasma sintering (SPS) has been used to prepare samples of fully dense, fine-grained Al with average grain sizes ranging from 0.8 μm to 5.2 μm, in a fully recrystallized condition, with equiaxed grains and a random texture. The microstructures and mechanical properties of these sintered fine-grained Al samples have been studied using EBSD, TEM and compression testing. Based on these studies, relationships between the microstructure and mechanical properties have been established. The results show that the formation of deformation microstructure depends on grain size. During deformation, all grains in samples with an average grain size of 5.2 μm show grain subdivision by dislocation boundary formation, though few grains in a sample with an average grain size of 0.8 μm show dislocation boundary formation. The mechanical properties of fine-grained Al show a transition in behavior with decreasing average grain size. For samples with an average grain size of 1.3 μm, stress-strain curves show yield drop phenomenon, attributed to source-limited hardening. For a sample with an average grain size of 0.8 μm, the stress-strain curveshows only limited work-hardening after yielding, in agreement with the observation of the limited formation of dislocation boundaries inside grains during deformation. For a sample with average grain size of 5.2 μm the average dislocation boundary misorientation angle increases more quickly than in deformed conventional coarse-grained Al deformed to the same strain, due to the effect of increased volume fraction of grain boundaries and oxide particles. The strength of the SPS-prepared Al samples is higher than found for samples with identical grain sizes prepared by thermo-mechanical deformation, due to the presence of oxide particles, and to source-limited hardening for samples with average grain sizes smaller than 1.3 μm.

Key wordsspark plasma sintering    fine-grained Al    microstructure    mechanical property
收稿日期: 2013-03-11     
基金资助:

丹麦国家研究基金项目DNRF86-5及国家自然科学基金项目51261130091和50971074资助

作者简介: 乐国敏, 女, 1985年生, 博士生

[1] Chokski A H, Rosen A, Karch J, Gleiter H.  Scr Metall, 1989; 23: 1679

[2] Giga A, Kimoto Y, Takigawa Y, Higashi K.  Scr Mater, 2006; 55: 143
[3] Nich T G, Wadsworth J.  Scr Metall Mater, 1991; 25: 955
[4] Lu K, Sui M L.  Scr Mater, 1993; 28: 1465
[5] Huang X, Hansen N, Tsuji N.  Science, 2006; 312: 249
[6] Hung P C, Sun P L, Yu C Y, Kao P W, Chang C P.  Scr Mater, 2005; 53: 647
[7] Tsuji N, Ito Y, Saito Y, Minamino Y.  Scr Mater, 2002; 47: 893
[8] Yu C Y, Kao P W, Chang C P.  Acta Mater, 2005; 53: 4019
[9] Kamikawa N, Huang X, Tsuji N, Hansen N.  Acta Mater, 2009; 57: 4198
[10] Kamikawa N, Tsuji N, Huang X, Hansen N.  Acta Mater, 2006; 54: 3055
[11] Yang X Y, Zhang Z L, Wang J, Qin J, Chen Z Y.  Acta Metall Sin, 2011; 12: 1561
(杨续跃, 张之岭, 王 \ \ 军, 秦 \ \ 佳, 陈志永. 金属学报, 2011; 12: 1561)
[12] Prados E F, Sordi V L, Ferrante M.  Acta Mater, 2013; 61: 115
[13] Munir Z A, Anselmi-Tamburini U.  J Mater Sci, 2006; 41: 763
[14] Omori M.  Mater Sci Eng, 2000; A287: 183
[15] Le G M, Godfrey A, Hansen N.  Mater Des, 2013; 49: 360
[16] Liu Q, Meng Q C, Hong B.  Micron Microsc Acta, 1989; 20: 255
[17] Hansen N.  Acta Metall, 1977; 25: 863
[18] Sun P L, Cerreta E K, Gray III G T, Bingert J F.  Metall Mater Trans, 2006; 37A: 2983
[19] Kuhlmann-Wilsdorf D, Hansen N.  Scr Metall Mater, 1991; 25: 1557
[20] Liu Q, Hansen N.  Scr Metall Mater, 1995; 32: 1289
[21] Liu Q, Huang X, Lloyd D J, Hansen N.  Acta Mater, 2002; 50: 3789
[22] Hughes D A, Hansen N.  Acta Mater, 2000; 48: 2985
[23] Le G M, Godfrey A, Hong C S, Huang X, Winther G.  Scr Mater, 2012; 66: 359
[24] Feaugas X, Haddou H.  Philos Mag, 2007; 87: 989
[25] Risbud S H, Han Y H.  Scr Mater, 2013; 69: 105
[26] Holland T B, Anselmi-Tamburini U, Mukherjee A K.  Scr Mater, 2013; 69: 117
[27] Hughes D A, Hansen N, Bammann D J.  Scr Mater, 2003; 48: 147
[28] Godfrey A, Hughes D A.  Mater Charact, 2002; 48: 89
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.