Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 541-546    DOI: 10.3724/SP.J.1037.2012.00037
  论文 本期目录 | 过刊浏览 |
偏析对DZ483镍基高温合金糊状区内液相密度的影响
封少波,张楠楠,罗兴宏
中国科学院金属研究所, 沈阳 110016
INFLUENCE OF SEGREGATION ON LIQUID DENSITY IN THE MUSHY ZONE OF DZ483 Ni-BASED SUPERALLOY
FENG Shaobo, ZHANG Nannan, LUO Xinghong
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

封少波,张楠楠,罗兴宏. 偏析对DZ483镍基高温合金糊状区内液相密度的影响[J]. 金属学报, 2012, 48(5): 541-546.
, , . INFLUENCE OF SEGREGATION ON LIQUID DENSITY IN THE MUSHY ZONE OF DZ483 Ni-BASED SUPERALLOY[J]. Acta Metall Sin, 2012, 48(5): 541-546.

全文: PDF(2246 KB)  
摘要: 为研究DZ483合金在凝固过程中的元素偏析行为对糊状区内液相密度的影响, 采用等温凝固结合水淬法对合金进行不同温度下的凝固实验. 利用OM 和SEM观察试样的凝固组织, 利用EDS测量固相和剩余液相的元素含量, 并根据剩余液相的成分计算其密度. 结果表明,  DZ483合金的开始凝固温度略低于1335℃, 在1325℃液相中开始析出富含Ta和Ti的MC; W和Co为负偏析元素, Mo, Ta和Ti为正偏析元素, 而 Al和Cr几乎不发生偏析; 剩余液相的密度随温度降低基本呈下降趋势, 但在1325至1315℃之间有所回升. 计算结果表明, 温度对液相密度的影响很小,合金元素的偏析对液相密度的影响占主要地位. 其中, Mo和Ta的偏析导致液相密度增加, 而Ti和W的偏析导致液相密度明显降低. 各合金元素的偏析对密度变化的贡献由大到小顺序为: Ti>Ta>W>Cr>Mo>Al>Co. MC的形成消耗了大量的Ti和Ta, 对合金元素的偏析造成一定的影响, 从而导致液相密度在1325至1315℃ 之间有所增加.
关键词 镍基高温合金雀斑偏析密度    
Abstract:Ni-based superalloys have been widely applied in advanced aeroengine as gas turbine blades and vanes. The freckles in superalloys formed during directional solidification have deleterious influence on the properties of the alloys. The generation of freckles is associated with the local liquid density gradient in the mushy zone, which is obviously influenced by microsegregation of alloy elements. However, the individual contributions of the various elements to the total density variation are still not well known. Therefore, the effect of microsegregation on the liquid density variation in DZ483 Ni-based superalloy was investigated by isothermal solidification together with liquid quench method. Solidification microstructures were observed by optical microscope and SEM, and the compositions of the solids and the residual liquid were determined by EDS. Based on the compositions of residual liquids, the densities of liquids at different temperatures were calculated. The results show that the onset solidification temperature of DZ483 alloy is a little bit below 1335℃, and MC, which is enriched with Ta and Ti, formed at about 1325℃. The segregation coefficients of different elements show that W and Co are negative segregation elements, Ta and Ti positive segregation elements, while Al and Cr show little segregation. The density of the residual liquid generally decreases as the decrease of temperature, with the exception that it increases somewhat from 1325 to 1315℃. Calculation results show that temperature has insignificant influence on liquid density, and variation of density is mainly due to microsegregation. Segregations of Mo and Ta lead to the increase of density, but segregations of Ti and W present opposite effect. Contribution of each element to the variation of the liquid density is analyzed. The sequence of contributions of alloy elements to the variation of total liquid density is TiTa>W>Cr>Mo>Al>Co. The formation of MC consumes an abundant of Ti and Ta, resulting in the increase of liquid density from 1325 to 1315 ℃.
Key wordsNi-based superalloy    freckle    segregation    density
收稿日期: 2012-01-16     
ZTFLH: 

TG146.1

 
基金资助:

国家自然科学基金资助项目51171196

作者简介: 封少波, 男, 1984年生, 博士生
[1] Pan Q Y, Huang W D, Li Y M, Lin X, Zhou Y H.  J Mater Sci Lett,1996; 15: 2112

[2] Zhang T, Ren W L, Dong J W, Li X, Ren Z M, Cao G H, Zhong Y B,Deng K, Lei Z S, Guo J T.  J Alloys Compd, 2009; 487: 612

[3] Liu G, Liu L, Zhao X B, Zhang W G, Jin T, Zhang J, Fu H Z. Acta Metall Sin, 2010; 46: 77

    (刘刚, 刘林, 赵新宝, 张卫国, 金涛, 张军, 傅恒志.金属学报, 2010; 46: 77)

[4] Shi C X, Zhong Z Y.  Acta Metall Sin, 2010; 46: 1281

    (师昌绪, 仲增墉. 金属学报, 2010; 46: 1281)

[5] Zhang S, Tian S G, Yu H C, Su Y, Yu X F, Yu L L.  Acta Metall Sin,2011; 47: 61

    (张姝, 田素贵, 于慧臣, 苏勇, 于兴福, 于莉丽. 金属学报, 2011; 47: 61)

[6] Gu J P, Beckermann C, Giamei A F.  Metall Mater Trans,1997; 28A: 1533

[7] Schneider M C, Gu J P, Beckermann C, Boettinger W J, Kattner U R. Metall Mater Trans, 1997; 28A: 1517

[8] Auburtin P, Wang T, Cockcroft S L, Mitchell A.  Metall Mater Trans,2000; 31B: 801

[9] Beckermann C, Gu J P, Boettinger W J.  Metall Mater Trans,2000; 31A: 2545

[10] Valdes J, King P, Liu X B.  Metall Mater Trans,2010; 41A: 2408

[11] Amouyal Y, Seidman D N.  Acta Mater, 2011; 59: 6729

[12] Madison J, Spowart J E, Rowenhorst D J, Aagesen L K,Thornton K, Pollock T M.  Metall Mater Trans, 2012; 43A: 369

[13] Lu J W, Chen F L.  J Cryst Growth, 1996; 165: 137

[14] Pollock T M, Murphy W H.  Metall Mater Trans, 1996; 27A: 1081

[15] Neilson D G, Incropera F P.  Warme Stoffubertrag, 1991; 27: 1

[16] Du W, Li J G, Fu H Z.  Trans Nonferrous Met Soc, 1998; 8: 83

[17] Hobbs R A, Tin S, Rae C M F.  Metall Mater Trans,2005; 36A: 2761

[18] Huang T W, Liu L, Zhang W G, Zhang J, Fu H Z.  Acta Metall Sin, 2009; 45: 1225

     (黄太文, 刘林, 张卫国, 张军, 傅恒志. 金属学报, 2009; 45: 1225)

[19] Long F, Yoo Y S, Seo S M, Jin T, Hu Z Q, Jo C Y.  J Mater Sci Technol, 2011; 27: 101

[20] Cutler E R, Wasson A J, Fuchs G E.  J Cryst Growth,2009; 311: 3753

[21] D'Souza N, Lekstrom M, Dong H B.  Mater Sci Eng,2008; A490: 258

[22] Tin S, Pollock T M.  J Mater Sci, 2004; 39: 7199

[23] Tin S, Pollock T M.  Metall Mater Trans, 2003; 34A: 1953

[24] Wang L, Li C Q, Dong J X, Zhang M C.  Chem Eng Commun,2009; 196: 754

[25] Wang L, Yao Y J, Dong J X, Zhang M C.  Chem Eng Commun,2010; 197: 1571

[26] Guan X R, Zheng Z, Tong J, Liu E Z, Yu Y S, Zhu Y X,Zhai Y C.  Chin J Nonferrous Met, 2009; 19: 272

     (管秀荣, 郑志, 佟健, 刘恩泽, 于永泗, 朱耀宵, 翟玉春.中国有色金属学报, 2009; 19: 272)

[27] Mukai K, Li Z S, Mills K C.  Metall Mater Trans,2005; 36B: 255

[28] De Laeter J R, Bohlke J K, De Bievre P, Hidaka H, Peiser H S,Rosman K J R, Taylor P D P.  Pure Appl Chem, 2003; 75: 683

[29] Li Z S, Mills K C, McLean M, Mukai K.  Metall Mater Trans,2005; 36B: 247
 
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[8] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[11] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[12] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[13] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[14] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[15] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.