Please wait a minute...
金属学报  2011, Vol. 47 Issue (2): 173-178    DOI: 10.3724/SP.J.1037.2010.00367
  论文 本期目录 | 过刊浏览 |
氯化物熔盐体系共电沉积法制备Mg-Li-Gd合金的研究
魏树权1, 2), 张密林1, 韩伟1, 颜永得1, 张斌1, 3)
1) 哈尔滨工程大学材料科学与化学工程学院, 教育部超轻材料与表面技术重点实验室, 哈尔滨 150001
2) 哈尔滨师范大学化学化工学院, 哈尔滨 150025
3) 黑龙江省科学院石油化学研究院, 哈尔滨 150040
STUDY ON ELECTROCHEMICAL CODEPOSITION OF Mg-Li-Gd ALLOYS FROM CHLORIDE MELTS
WEI Shuquan1, 2), ZHANG Milin1, HAN Wei1), YAN Yongde1, ZHANG Bin1, 3)
1) Key Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2) College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025
3) Institute of Petrochemistry, HLJ Academy of Sciences, Harbin 150040
引用本文:

魏树权 张密林 韩伟 颜永得 张斌. 氯化物熔盐体系共电沉积法制备Mg-Li-Gd合金的研究[J]. 金属学报, 2011, 47(2): 173-178.
, , , , . STUDY ON ELECTROCHEMICAL CODEPOSITION OF Mg-Li-Gd ALLOYS FROM CHLORIDE MELTS[J]. Acta Metall Sin, 2011, 47(2): 173-178.

全文: PDF(1015 KB)  
摘要: 在LiCl-KCl-MgCl2-Gd2O3熔盐体系中采用电化学共沉积法制备Mg-Li-Gd合金, 借助循环伏安和计时电位技术对熔盐电化学行为进行探讨, 并运用XRD, SEM, EDS和OM对所得合金进行测试. 研究结果表明, Gd2O3在LiCl-KCl熔盐体系中几乎不溶, 而在LiCl-KCl-MgCl2熔盐中有一定的溶解度, 而且随着温度的升高, Gd2O3的溶解度也随之增大. 循环伏安和计时电位研究表明, 添加MgCl2和Gd2O3后, Li的沉积电位向正向移动, 当阴极电位小于-2.30 V或阴极电流密度大于0.776 A/cm2时, 可以实现Li, Mg和Gd共同析出. 通过对电解条件的考察可知, 电解温度对电流效率影响很大, 当电解温度为873 K时, 电流效率最大为78.87%. 阴极电流密度高, 则制备的Mg-Li-Gd合金中Li的含量较高. 合金微观组织分析表明, 在 Mg-Li-Gd合金中存在Mg3Gd相. Gd对Mg-Li合金有细化作用, 而且随着Gd含量的增多, 合金的晶粒细化越明显. 由Gd元素的面扫描可知, Gd主要分布在晶界处.
关键词 共电沉积Mg-Li-Gd合金Gd2O3氯化物熔盐    
Abstract:Mg-Li-Gd alloys were obtained by electrochemical codeposition method in LiCl-KCl-MgCl2-Gd2O3 molten salt on molybdenum electrode at 1073 K. Transient electrochemical techniques, such as cyclic voltammetry and chronopotentiometry, were used in order to study the reaction mechanism. XRD, SEM, EDS and OM were employed to characterize Mg-Li-Gd alloys. The results suggested that Gd2O3 could dissolve in LiCl-KCl-MgCl2 molten salt while it could not in LiCl-KCl melt. Cyclic voltammograms and chronopotentiometry measurements indicated that the potential of Li metal deposition, after the addition of MgCl2 and Gd2O3, was more positive than the one of Li metal deposition before the addition. The codeposition of Mg, Li and Gd occurred when applied potentials were more negative than -2.30 V (vs. Ag/AgCl) or current densities were higher than 0.776 A/cm2 in LiCl-KCl-MgCl2-Gd2O3. Electrolysis temperature exerted a great influence on current efficiency, 78.87% current efficiency was obtained when electrolysis temperature was 873 K. Li content in Mg-Li-Gd alloys increased with the high current densities. XRD results showed that Mg3Gd intermetallic compounds formed in Mg-Li-Gd alloys. Grain size became smaller as the Gd metal content increased in the alloy. The analysis of SEM and EDS demonstrated that the element of Gd was mainly distributed at grain boundaries.
Key wordselectrochemical codeposition    Mg-Li-Gd alloy    Gd2O3    chloride melt
收稿日期: 2010-07-21     
基金资助:

国家高技术研究发展计划项目2009AA050702, 国家自然科学基金项目50871033, 中央高校基础科研业务费专项资金项目HEUCF101002和黑龙江省科技攻关项目GC06A212资助

作者简介: 魏树权, 男, 1972年生, 博士生
[1] Crawford P, Barrosa R, Mendez J, Foyos J, Es–said O S. J Mater Process Technol, 1996; 56: 108

[2] Watanable H, Tsutsui H. Int J Plast, 2001; 17: 387

[3] Dong S L, Imai T, Lim SW, Kanetake N, Saito N.J Mater Sci, 2007; 42: 5296

[4] Wang T, Zhang M L, Wu R Z. Mater Lett, 2008; 62: 1846

[5] Chang T C, Wang J Y, Chu C L, Lee S. Mater Lett, 2006; 60: 3272

[6] Xu G X. Rare Earth Elements (part II). Beijing: Metallurgical Industry Press, 1995: 462

(徐光宪. 稀土(下). 北京: 冶金工业出版社, 1995: 462)

[7] Tanno O, Ohuchi K, Matuzawa K. J Jpn Inst Light Met, 1992; 42: 3

[8] Anyanwu I A, Kamado S, Kojima Y. Mater Trans, 2001; 42: 1212

[9] Luo Alan A. Mater Sci Forum, 2003; 419–422(I): 57

[10] Jin G Y, Du W B, Li J H, Wu Y F. J Chin Rare Earth Soc, 2007; 25: 610

(靳广永, 杜文博, 李建辉, 吴玉峰. 中国稀土学报, 2007; 25: 610)

[11] Zhang M L, Yan Y D, Han W, Xue Y, Jing X Y, Liu X L, Wang S S, Zhang X M. Electrochemistry, 2009; 77: 699

[12] Yan Y D, Zhang M L, Xue Y, Han W, Cao D X, Wei S Q. Electrochim Acta, 2009; 54: 3387

[13] Yan Y D, Zhang M L, Xue Y, Han W, Cao D X, He L Y. J Appl Electrochem, 2009; 39: 455

[14] HanW, Chen Q, Ye K, Yan Y D, ZhangML. Acta Metall Sin (Engl Lett), 2010; 23: 129

[15] Yan Y D, Zhang M L, Xue Y, Han W, Cao D X, Jing X Y, He L Y, Yuan Y. Phys Chem Chem Phys, 2009; 11: 6148

[16] Du S L, Wu M H, Du F Y, Liu Y M. Chin Rare Earths, 1987; 2: 59

(杜森林, 吴美煌, 杜富英, 刘英明. 稀土, 1987; 2: 59)

[17] Chu Y L. Master Dissertation, Harbin Engineering University, 2009

(褚衍龙. 哈尔滨工程大学硕士论文, 2009)
[1] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[2] 郭春泰;冯力;杜森林;杨忠保;唐定骧. La在KCl-NaCl和LaCl_3-KCl-NaCl熔体中的溶解行为[J]. 金属学报, 1990, 26(4): 103-107.