Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2025.00191
  本期目录 | 过刊浏览 |
抗菌低合金化Mg-Ag-In合金的组织特性和性能
魏招龙1  程伟丽1,2  常 成3,4  穆映州2,5  张全福2,5  宋 蕾2,5  崔泽琴1  余 晖6

1 太原理工大学 材料科学与工程学院  太原 030024

2 山西省多功能镁合金成型技术创新中心  孝义 032308

3 广东省科学院新材料研究所 特种材料表面工程全国重点实验室  广州 510651

4 粤港现代表面工程技术联合实验室 广东省现代表面工程技术重点实验室  广州 510651

5 孝义东义镁业有限公司  孝义 032308

6 河北工业大学 材料科学与工程学院  天津 300132

Microstructural Characteristics and Properties of Antibacterial Low-Alloyed Mg–Ag–In Alloys

WEI Zhaolong 1, CHENG Weili 1,2, CHANG Cheng 3,4, MU Yingzhou 2,5, ZHANG Quanfu 2,5, SONG Lei 2,5, CUI Zeqin 1, YU Hui 6

1 School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2 Technology Innovation Center of Forming in multifunctional Mg alloys of Shanxi Province, Xiaoyi 032308, China

3 State Key Laboratory of Special Materials Surface Engineering, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China

4 Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangdong-Hong Kong Joint Laboratory of Modern Surface Engineering Technology, Guangzhou 510651, China

5 Xiaoyi Dongyi Magnesium Industry Co. Ltd., Xiaoyi 032308, China

6 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China

引用本文:

魏招龙 程伟丽 常成 穆映州 张全福 宋蕾 崔泽琴 余晖. 抗菌低合金化Mg-Ag-In合金的组织特性和性能[J]. 金属学报, 10.11900/0412.1961.2025.00191.

全文: PDF(4001 KB)  
摘要: 
为了解决镁合金材料降解速率过快、强韧性不匹配和抗菌性不足等问题,本工作基于低合金化设计理念开发了挤压态Mg-Ag-In合金,研究了抗菌低合金化Mg-1Ag-0.5In合金的微观组织特性、力学性能、腐蚀行为、成骨细胞相容性和抗菌性。结果表明,挤压态Mg-1Ag-0.5In合金具有良好的强度和塑性协同性,这主要与拉伸孪晶的协调变形和多滑移模式有关。合金由腐蚀前期的点蚀和丝状腐蚀逐渐转变为单一的丝状腐蚀模式,降低了腐蚀速率,形成更致密的腐蚀产物膜。合金的腐蚀驱动力主要与晶粒取向和高核平均取向差区域的分布有关。挤压态Mg-1Ag-0.5In合金表现出良好的成骨细胞相容性,促进了成骨细胞的增值,同时其具备优异的抗菌性。
关键词 镁合金双尺寸组织力学性能腐蚀行为    
Abstract
Magnesium alloys are regarded as highly promising biomaterials for medical applications due to their low density, high strength, excellent biocompatibility, and ability to degrade safely within the human body. China, which possesses the world’s largest magnesium reserves, has a significant resource advantage for the research and development of medical magnesium alloys. In recent years, China has faced an increasingly severe societal challenge—population aging—which has led to a growing demand for biomaterials, particularly bone implant materials. However, existing magnesium alloys suffer from several limitations, including excessively rapid degradation, an imbalance between strength and toughness, and insufficient antibacterial properties. These drawbacks substantially hinder their clinical translation and large-scale application. To address these challenges and following the low-alloying design principle, an extruded Mg–Ag–In alloy was developed. This study focuses on a low-alloyed Mg–1Ag–0.5In composition with intrinsic antibacterial properties. The investigation examines its microstructural characteristics, mechanical performance, corrosion behavior, osteoblast compatibility, and antibacterial activity. The results showed that the extruded Mg–1Ag–0.5In alloy exhibited a favorable balance between strength and ductility. This synergy was primarily attributed to the coordinated deformation of tensile twins and multiple slip systems. During corrosion, the alloy transitioned from an initial mixed pitting and filamentous corrosion mode to a uniform filamentous corrosion pattern, which reduced the overall corrosion rate and facilitated the formation of a denser corrosion product layer. The corrosion driving force was mainly influenced by the grain orientation and the distribution of regions with high kernel average misorientation values. Furthermore, the extruded Mg–1Ag–0.5In alloy demonstrated excellent osteoblast compatibility, effectively promoting the proliferation of mouse embryonic osteoblast (MC3T3-E1) cells, and exhibited remarkable antibacterial activity. 
Key wordsmagnesium alloy    bimodal-structured    mechanical properties    corrosion behavior
收稿日期: 2025-07-04     
基金资助:国家自然科学基金项目;山西省自然科学基金项目;吕梁市校地合作重点研发专项;山西浙大新材料与化工研究院技术开发项目
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[5] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[6] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[7] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[8] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[9] 游云翔, 谭力, 高静静, 周涛, 周志明. 利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构[J]. 金属学报, 2025, 61(6): 866-874.
[10] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[11] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[12] 谷少杰, 刘洋, 李彩霞, 胡上茂, 杜艳霞. 阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响规律及作用机制[J]. 金属学报, 2025, 61(6): 917-928.
[13] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[14] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[15] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.