Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2025.00058
  本期目录 | 过刊浏览 |
表层多孔Ti6Al4V/TiC梯度材料构筑、组织和性能
邵星海,王文焱,谢敬佩,秦文栋,王爱琴,马窦琴,毛志平,柳培,郭清远
河南科技大学 材料科学与工程学院 洛阳 471003
Construction, Microstructure, and Properties of Ti6Al4V/TiC Functionally Graded Material with Porous Surface
引用本文:

邵星海 王文焱 谢敬佩 秦文栋 王爱琴 马窦琴 毛志平 柳培 郭清远. 表层多孔Ti6Al4V/TiC梯度材料构筑、组织和性能[J]. 金属学报, 10.11900/0412.1961.2025.00058.

全文: PDF(2065 KB)  
摘要: 均质钛基复合材料因组织和性能单一而导致抗冲击性能不足,本工作旨在构筑一种兼具表层多孔和功能梯度特征的高吸能、高抗冲击钛基复合材料。通过ZrO2空心球占位法和热压烧结法制备了含表层多孔钛层和5个梯度层的Ti6Al4V/TiC梯度材料,多孔钛层孔隙率为40%,梯度层致密度不低于98.8%,梯度层由底层向多孔钛方向,TiC加入量0~%递增,TiC粒径由3~5增加至15-53μm。研究了表层多孔Ti6Al4V/TiC梯度材料的显微组织和性能,结果表明,相邻梯度层的连接形式为冶金结合,基体由层片状α-Ti相和β-Ti相构成,TiC颗粒主要分布在原始β-Ti晶界位置,强化机制为细晶强化、位错强化和弥散强化;与Ti6Al4V层相比,加入TiC颗粒后,原始β-Ti晶粒及其内部的α-Ti相、β-Ti相得到明显细化,加入尺寸为15~53 μm、含量为8%的TiC颗粒后,该梯度层材料硬度最高,而其抗拉强度降低;加入尺寸为3~5 μm、含量为4%和6%的TiC颗粒后,2个梯度层材料抗拉强度和韧性均提升,其中前者韧性最好,后者抗拉强度最高;在压缩实验过程中,表面多孔钛层能在较低压缩载荷下持续坍塌变形,具有显著的吸能特性。表层多孔Ti6Al4V/TiC梯度材料能够通过高吸能表层多孔钛的削弱冲击、高硬度迎弹面的抗穿透作用和高强高韧背弹面的抗冲击作用,来实现防护性能提升。
关键词 Ti6Al4V多孔钛梯度材料抗冲击组织性能    
Abstract:Homogeneous titanium matrix composites (TMCs), despite their unique microstructure and properties, often exhibit inadequate impact resistance. To overcome this limitation, this study presents a high-energy-absorbing and impact-resistant TMC by incorporating a dual design strategy: a porous surface layer and a functionally graded internal structure. A Ti6Al4V/TiC graded material, consisting of one porous titanium surface layer and five gradient layers, was fabricated using the ZrO2 hollow sphere placeholder method combined with hot pressing sintering. The porous titanium layer exhibited a porosity of 40%, while each of the five gradient layers achieved a relative density of 98.8%. Moving from the bottom layer of the porous surface, the TiC content was systematically increased from 0 to 8%, and the TiC particle size was enlarged from 3–5 μm to 15–53 μm. The microstructure and mechanical properties of the fabricated material were comprehensively characterized. The gradient layers were metallurgically bonded, ensuring structural integrity. The matrix microstructure comprised lamellar α-Ti and β-Ti phases, with TiC particles predominantly distributed along prior β-Ti grain boundaries. The identified strengthening mechanisms included grain refinement, dislocation strengthening, and dispersion strengthening. Compared with the monolithic Ti6Al4V layer, the incorporation of TiC particles effectively refined the prior β-Ti grains along with the α-Ti and β-Ti phases. The gradient layer containing 8%TiC particles (15–53 μm) achieved the highest hardness but showed reduced tensile strength. In contrast, the layers containing 4% and 6%TiC particles (3–5 μm) demonstrated enhanced tensile strength and toughness. Notably, the layer with 4%TiC showed superior toughness, while the layer with 6%TiC achieved the maximum tensile strength. Compression tests revealed that the porous titanium surface layer possessed remarkable energy absorption capacity, undergoing progressive collapse deformation under relatively low compressive loads before reaching densification. The Ti6Al4V/TiC functionally graded material with a porous surface effectively enhanced protective performance through a synergistic mechanism: the highly energy-absorbing porous surface mitigated initial impact forces, the high-hardness impact-facing layers provided superior penetration resistance, and the high-strength, high-toughness backing layers contributed to excellent residual load-bearing capacity and overall impact resistance.
Key wordsTi6Al4V    Porous titanium alloys, gradient materials, impact resistance, and structural properties
收稿日期: 2025-03-03     
ZTFLH:  TG146.2+3  
基金资助:河南省重点研发专项“钛合金再生绿色制备技术与装备”
[1] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[2] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[3] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[4] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[5] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[6] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[7] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[8] 孙秀荣, 王会珍, 杨平, 毛卫民. 不同结构金属高速压缩力学行为及微观剪切结构差异*[J]. 金属学报, 2014, 50(4): 387-394.
[9] 王祯 刘雪峰 谢建新. 连续柱状晶CuAlNi合金无模拉拔过程中的组织性能演变[J]. 金属学报, 2012, 48(7): 867-874.
[10] 冷崇燕 周荣 张旭 卢德宏 刘洪喜. Ag和Ta离子双注入改善Ti6Al4V合金耐磨性能[J]. 金属学报, 2009, 45(6): 764-768.
[11] 杨模聪 林鑫 许小静 陈静 黄卫东. 激光立体成形Ti60--Ti2AlNb梯度材料的组织与相演变[J]. 金属学报, 2009, 45(6): 729-736.
[12] 邓天勇 吴迪 许云波 赵彦峰 刘相华 王国栋. 普碳钢中厚板热轧温度制定的一种新的数学方法[J]. 金属学报, 2009, 45(1): 67-72.
[13] 刘建涛; 林鑫; 吕晓卫; 陈静; 黄卫东 . Ti-Ti2AlNb功能梯度材料的激光立体成形研究[J]. 金属学报, 2008, 44(8): 1006-1012 .
[14] 席明哲; 张永忠; 涂义; 石力开; 金具涛 . 激光快速成形 316L不锈钢/镍基合金/Ti6Al4V 梯度材料[J]. 金属学报, 2008, 44(7): 826-830 .
[15] 杨昭; 张海峰; 王爱民; 丁炳哲; 胡壮麒 . 半固态挤压形成高铬铸铁梯度组织材料[J]. 金属学报, 2003, 39(2): 164-167 .