Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 148-160    DOI: 10.11900/0412.1961.2019.00156
  研究论文 本期目录 | 过刊浏览 |
一般大气环境下锈蚀结构钢表面特征与随机模型
王友德1,2(),徐善华1,2,李晗1,2,张海江1,2
1. 西安建筑科技大学省部共建西部绿色建筑国家重点实验室 西安 710055
2. 西安建筑科技大学工程结构安全与耐久重点实验室 西安 710055
Surface Characteristics and Stochastic Model of Corroded Structural Steel Under General Atmospheric Environment
WANG Youde1,2(),XU Shanhua1,2,LI Han1,2,ZHANG Haijiang1,2
1. State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Key Lab of Engineering Structural Safety and Durability, Xi’an University of Architecture and Technology, Xi’an 710055, China
全文: PDF(18377 KB)   HTML
摘要: 

对处于大气腐蚀环境中的结构钢开展了6批次人工加速腐蚀实验和为期8 a的自然暴露实验,利用表面形貌测试方法和腐蚀表征参数自编分析程序对锈蚀结构钢表面特征参数及演变规律进行研究,明确锈蚀深度、锈坑深度、锈坑径深比分布特征,揭示其均值、方差等统计参数及锈坑形状的变化规律。研究表明,一般大气环境下结构钢锈蚀深度服从正态分布,锈坑深度与径深比服从对数正态分布;随着腐蚀程度的增大,锈蚀深度均值、标准差与功率谱密度峰值以及锈坑深度对数均值均逐渐增大,锈坑径深比对数均值逐渐减小;锈坑形状由圆柱或半球体逐渐向圆锥体转变。最后基于锈蚀深度参数和锈坑参数统计分析结果,考虑各表征参数的变化规律与内在联系,建立了锈蚀深度随机场模型与锈坑随机分布模型,实现了一般大气环境锈蚀钢材表面特征的准确模拟与重建。

关键词 一般大气环境结构钢锈蚀表面特征随机模型    
Abstract

Steel structures exposed to corrosive atmospheres for a long time are highly susceptible to corrosion damage. The safety assessments of existing corroded steel structures rely heavily on the quantification of corrosion itself. In order to study the corrosion characteristics of structural steel in general atmospheric environment, 6 batches of artificial accelerated corrosion experiments and 8 a of natural exposure experiments were carried out. The surface characteristic parameters and evolution rules of corroded structural steel were studied by the surface morphology tests and self-programmed morphology analysis program. The distribution characteristics of corrosion depth, pit depth and aspect ratio were clarified, and the changing laws of statistical parameters (such as mean value and standard deviation) and pitting shapes were revealed. The results indicated that the corrosion depth of structural steel in general atmospheric environment obeyed the normal distribution, and the pit depth and aspect ratio obeyed the lognormal distribution. With the increase of corrosion degree, the mean value and standard deviation of corrosion depth, the peak value of power spectrum density of corrosion depth, and the logarithmic mean value of pit depth gradually increased, and the logarithmic mean value of pit aspect ratio decreased. Meanwhile, the shape of pits was gradually changed from a cylinder or hemisphere to a cone. Finally, based on the statistical analysis results of corrosion depth parameters and pit parameters, and taking the variation laws and internal relationships of characterization parameters into consideration, the stochastic field model of corrosion depth and the random distribution model of corrosion pits were established, which achieved the accurate simulation and reconstruction of surface characteristics of corroded steel under general atmospheric environment.

Key wordsgeneral atmospheric environment    structural steel    corrosion    surface characteristic    stochastic model
收稿日期: 2019-05-20     
ZTFLH:  TU511.3  
基金资助:国家自然科学基金项目(51908455);中国博士后科学基金项目(2019M653572);陕西省教育厅科研计划项目(19JS042)
通讯作者: 王友德     E-mail: yord.w@xauat.edu.cn
Corresponding author: Youde WANG     E-mail: yord.w@xauat.edu.cn
作者简介: 王友德,男,1988年生,博士

引用本文:

王友德,徐善华,李晗,张海江. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160.
Youde WANG, Shanhua XU, Han LI, Haijiang ZHANG. Surface Characteristics and Stochastic Model of Corroded Structural Steel Under General Atmospheric Environment. Acta Metall Sin, 2020, 56(2): 148-160.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00156      或      https://www.ams.org.cn/CN/Y2020/V56/I2/148

图1  锈蚀深度参数提取示意图
图2  锈坑参数提取原理示意图与提取结果
Corrosion conditionSample No.Corrosion timeT0 / mmTmax / mmγ / %Δte / μm
Accelerated corrosionA140 d7.27.202.76199
A280 d7.27.204.26307
A3120 d7.27.146.04435
A4160 d7.27.068.72628
A5240 d7.27.039.07653
A6320 d7.26.8212.56904
Natural corrosionHTF8 a9.07.9821.181906
HBF8 a9.07.9321.851966
HW8 a6.55.2829.921944
STF8 a9.07.8421.971977
SBF8 a9.07.8022.642037
SW8 a6.55.2732.992144
VTF8 a8.07.3616.941355
VBF8 a8.07.2519.211537
VW8 a6.05.4219.731184
表1  试件腐蚀程度参数
图3  加速腐蚀试件表面形貌
图4  自然腐蚀试件表面形貌
图5  加速腐蚀与自然腐蚀部分试件锈蚀深度频率分布直方图

Sample No.

Δtave / μmtsd / μmκ1κ2
Side ASide BSide ASide BSide ASide BSide ASide B
A11178236281.020.920.450.42
A217313458460.981.050.500.46
A320816758621.031.120.450.45
A424324564781.241.280.600.58
A524224160801.221.150.640.59
A626725794871.391.480.750.70
HTF3105761381862.472.480.951.06
HBF3975001641772.342.280.971.10
HW2914331151461.982.180.980.96
STF2845331561802.792.500.891.02
SBF3404981571672.082.151.131.15
SW3825321731782.292.260.681.13
VTF2814341451101.312.030.521.02
VBF3204671381632.172.440.951.06
VW397207164902.241.520.970.56
表2  锈蚀深度参数统计结果
图6  平均锈蚀深度(Δtave)和锈蚀深度标准差(tsd)的变化规律
图7  部分加速腐蚀试件功率谱密度函数拟合结果
图8  与腐蚀程度相关的腐蚀表面功率谱拟合参数κ1和κ2变化规律
图9  锈坑深度(h)和径深比(Ar)提取结果

Sample No.

Pd / cm-2μhσhμArσAr
Side ASide BSide ASide BSide ASide BSide ASide BSide ASide B
A122.219.14.915.090.190.161.581.550.550.53
A220.520.15.215.350.200.181.561.620.690.63
A319.418.55.685.510.070.100.901.430.610.59
A416.217.25.755.800.110.210.940.850.600.63
A512.513.25.635.820.130.141.210.920.640.66
A610.111.55.885.950.240.161.330.950.630.60
HTF20.26.45.466.470.530.380.970.340.690.69
HBF6.97.56.386.230.390.310.720.720.540.68
HW9.411.56.345.980.340.210.160.250.50.53
STF15.77.65.406.350.400.441.240.610.640.66
SBF13.410.75.885.720.670.480.430.570.620.60
SW8.66.85.896.460.380.361.070.680.510.51
VTF15.314.65.495.800.470.630.580.240.490.62
VBF11.013.36.096.270.500.340.280.240.560.56
VW12.214.55.915.700.350.390.690.730.490.59
表3  锈坑特征参数统计结果
图10  锈坑深度对数均值(μh)和锈坑径深化对数均值(μAr)变化规律
图11  锈坑形状参数(VB)统计结果
图12  锈坑深度与锈坑形状的关系
图13  锈坑密度(Pd)变化规律
图14  HTF试件(Side B)映射重建形貌
[1] Leech T. The collapse of the Kinzua viaduct: A combination of design oversight and material fatigue left a century-old railroad bridge vulnerable to an F-1 tornado [J]. Am. Sci., 2005, 93: 348
[2] Witcher T R. From disaster to prevention: The silver bridge [J]. Civ. Eng. Mag. Arch., 2017, 87: 44
[3] Albrecht P, Hall T T. Atmospheric corrosion resistance of structural steels [J]. J. Mater. Civil. Eng., 2003, 15: 2
[4] Ye D, Zhao D W, Li J, et al. Study on the effects of air pollution on corrosion of carbon steel [J]. J. Chongqing Architect. Univ., 2005, 27: 80
[4] (叶 堤, 赵大为, 李 娟等. 大气污染对碳钢的腐蚀影响研究 [J]. 重庆建筑大学学报, 2005, 27: 80)
[5] Ye D, Zhao D W, Chen G C, et al. Study on the effects of air pollution on corrosion of metals in inland area [J]. Equip. Environ. Eng., 2006, 3(1): 37
[5] (叶 堤, 赵大为, 陈刚才等. 非海洋地区大气污染对金属材料的腐蚀影响研究 [J]. 装备环境工程, 2006, 3(1): 37)
[6] Yang X Z, Yang W. Electrochemical Thermodynamics of Metal Corrosion: Potential-PH Diagram and its Application [M]. Beijing: Chemical Industry Press, 1991: 123
[6] (杨熙珍, 杨 武. 金属腐蚀电化学热力学: 电位—PH图及其应用 [M]. 北京: 化学工业出版社, 1991: 123)
[7] Wang Y K, Wharton J A, Shenoi R A. Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: A review [J]. Corros. Sci., 2014, 86: 42
[8] Southwell C R, Bultman J D, Hummer C W. Seawater Corrosion Handbook [M]. New Jersey: Noyes Data Corporation, 1979: 87
[9] Garbatov Y, Guedes S C, Wang G. Nonlinear time dependent corrosion wastage of deck plates of ballast and cargo tanks of tankers [J]. J. Offshore Mech. Arct. Eng., 2007, 129: 48
[10] Melchers R E. Corrosion uncertainty modelling for steel structures [J]. J. Constr. Steel. Res., 1999, 52: 3
[11] Hui Y L, Lin Z S, Li R. Experimental study and analysis on the property of corroded rebar [J]. Ind. Constr., 1997, 27(6): 10
[11] (惠云玲, 林志伸, 李 荣. 锈蚀钢筋性能试验研究分析 [J]. 工业建筑, 1997, 27(6): 10)
[12] Reiser D B, Alkire R C. The measurement of shape change during early stages of corrosion pit growth [J]. Corros. Sci., 1984, 24: 579
[13] Pidaparti R M, Patel R R. Correlation between corrosion pits and stresses in Al alloys [J]. Mater. Lett., 2008, 62: 4497
[14] Luo L H, Huang Y H, Weng S, et al. Mechanism-related modelling of pit evaluation in the CrNiMoV steel in simulated environment of low pressure nuclear steam turbine [J]. Mater. Des., 2016, 105: 240
[15] Horner D A, Connolly B J, Zhou S, et al. Novel images of the evolution of stress corrosion cracks from corrosion pits [J]. Corros. Sci., 2011, 53: 3466
[16] Wang Y F, Cheng G X. Quantitative evaluation of pit sizes for high strength steel: Electrochemical noise, 3-D measurement, and image-recognition-based statistical analysis [J]. Mater. Des., 2016, 94: 176
[17] Tang F J, Lin Z B, Chen G D, et al. Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion [J]. Constr. Build. Mater., 2014, 70: 104
[18] Holme B, Lunder O. Characterisation of pitting corrosion by white light interferometry [J]. Corros. Sci., 2007, 49: 391
[19] Xu S H, Qiu B. Experimental study on fatigue behavior of corroded steel [J]. Mater. Sci. Eng., 2013, A584: 163
[20] Xu S H, Wang Y D. Estimating the effects of corrosion pits on the fatigue life of steel plate based on the 3D profile [J]. Int. J. Fatigue, 2015, 72: 27
[21] Mu X, Wei J, Dong J H, et al. Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone [J]. Acta Metall. Sin., 2012, 48: 420
[21] (穆 鑫, 魏 洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究 [J]. 金属学报, 2012, 48: 420)
[22] Chen L. Study on the deterioration properties of corroded steel [D]. Xi'an: Xi'an University of Architecture and Technology, 2010
[22] (陈 露. 腐蚀后钢材材料性能退化研究 [D]. 西安: 西安建筑科技大学, 2010)
[23] Melchers R E. Pitting corrosion of mild steel in marine immersion environment—Part 1: Maximum pit depth [J]. Corrosion, 2004, 60: 824
[24] Melchers R E. Pitting corrosion of mild steel in marine immersion environment—Part 2: Variability of maximum pit depth [J]. Corrosion, 2004, 60: 937
[25] Wang Y W. Ultimate strength of ship structures with corrosion wastage [D]. Shanghai: Shanghai Jiao Tong University, 2008
[25] (王燕舞. 考虑腐蚀影响船舶结构极限强度研究 [D]. 上海: 上海交通大学, 2008)
[26] Wang Y W, Huang X P, Cui W C. Pitting corrosion model of mild and low-alloy steel in marine environment—Part 1: Maximum pit depth [J]. J. Ship Mech., 2007, 11: 577
[26] (王燕舞, 黄小平, 崔维成. 船舶结构钢海洋环境点蚀模型研究之一: 最大点蚀深度时变模型 [J]. 船舶力学, 2007, 11: 577)
[27] Silva J E, Garbatov Y, Guedes S C. Ultimate strength assessment of rectangular steel plates subjected to a random localized corrosion degradation [J]. Eng. Struct., 2013, 52: 295
[28] Melchers R E, Ahammed M, Jeffrey R, et al. Statistical characterization of surfaces of corroded steel plates [J]. Mar. Struct., 2010, 23: 274
[29] Teixeira ? P, Soares C G. Ultimate strength of plates with random fields of corrosion [J]. Struct. Infrastruct. Eng., 2008, 4: 363
[30] Rahbar-Ranji A. Ultimate strength of corroded steel plates with irregular surfaces under in-plane compression [J]. Ocean Eng., 2012, 54: 261
[31] Qiu B. The study on surface characteristics and eccentric compressive load-capacity of corroded H-shape steel members at neutral salt fog environment [D]. Xi'an: Xi'an University of Architecture and Technology, 2014
[31] (邱 斌. 中性盐雾环境下锈蚀H型钢表面特征及偏压承载性能研究 [D]. 西安: 西安建筑科技大学, 2014)
[32] Wang R H, Ajit Shenoi R, Sobey A. Ultimate strength assessment of plated steel structures with random pitting corrosion damage [J]. J. Const. Steel Res., 2018, 143: 331
[33] Kong Z Y. Study on the degradation of fatigue properties for corrosion steel specimens by test [D]. Xi'an: Xi'an University of Architecture and Technology, 2010
[33] (孔正义. 腐蚀钢构件疲劳性能退化试验研究 [D]. 西安: 西安建筑科技大学, 2010)
[34] Shang Y. Study on the corrosive environment influences on the characteristics of the steel-structure surface [D]. Xi'an: Xi'an University of Architecture and Technology, 2011
[34] (商 钰. 腐蚀环境对钢结构表面锈蚀特征影响的研究 [D]. 西安: 西安建筑科技大学, 2011)
[35] Xu S H, Wang Y D, Xue Q F. Evaluation indicators and extraction method for pitting corrosion of structural steel [J]. J. Harbin Inst. Technol., 2015, 22: 15
[36] Wang Y D, Xu S H, Wang H, et al. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology [J]. Constr. Build. Mater., 2017, 152: 777
[37] Nakai T, Matsushita H, Yamamoto N, et al. Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report) [J]. Mar. Struct., 2004, 17: 403
[38] Kainuma S, Jeong Y S, Ahn J H. Investigation on the stress concentration effect at the corroded surface achieved by atmospheric exposure test [J]. Mater. Sci. Eng., 2014, A602: 89
[39] Li C G. Characterization of 3D surface micro-topography by 2D power spectrum [J]. Acta Metrol. Sin., 2004, 25: 11
[39] (李成贵. 三维表面微观形貌的二维功率谱表征 [J]. 计量学报, 2004, 25: 11)
[40] Liang S X, Sun W L, Li J. Simulation of multi-dimensional random fields by stochastic harmonic functions [J]. J. Tongji Univ. (Nat. Sci.), 2012, 40: 965
[40] (梁诗雪, 孙伟玲, 李 杰. 随机场的随机谐和函数表达 [J]. 同济大学学报(自然科学版), 2012, 40: 965)
[41] Zhou X Y, Ke W. The optimal probability distribution function of pits and its evolution under cyclic loading [J]. J. Chin. Soc. Corros. Prot., 1992, 12: 227
[41] (周向阳, 柯 伟. 点蚀坑参数的最佳分布形式及其在交变载荷下的演化 [J]. 中国腐蚀与防护学报, 1992, 12: 227)
[42] Aziz P M. Application of the statistical theory of extreme values to the analysis of maximum pit depth data for aluminum [J]. Corrosion, 1956, 12: 35
[43] Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation [J]. Appl. Mech. Rev., 1996, 49: 29
[1] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[2] 聂德福 赵杰 张俊善. 一种估算结构钢室温蠕变的方法[J]. 金属学报, 2011, 47(2): 179-184.
[3] 施锦杰 孙伟 耿国庆. 碳化对模拟混凝土孔溶液中HRB335钢腐蚀行为的影响[J]. 金属学报, 2011, 47(1): 17-24.
[4] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[5] 陈黄浦;邓增杰. 高强度结构钢的韧性启裂和稳态扩展[J]. 金属学报, 1989, 25(6): 49-54.
[6] 裴鸿勋;杨京俊;柯伟. 海洋用结构钢在NaCl溶液中疲劳短裂纹的扩展[J]. 金属学报, 1988, 24(6): 471-475.