Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1395-1402    DOI: 10.11900/0412.1961.2016.00026
  本期目录 | 过刊浏览 |
双轴肩搅拌摩擦焊对6061-T6铝合金表面组织及其在3.5%NaCl中腐蚀行为的影响*
乔岩欣1,周洋1,陈书锦1(),宋亓宁2
1 江苏科技大学材料科学与工程学院, 镇江 212003
2 河海大学机电工程学院, 常州 213022
EFFECT OF BOBBIN TOOL FRICTION STIR WELDING ON MICROSTRUCTURE AND CORROSION BEHAVIOR OF 6061-T6 ALUMINUM ALLOY JOINT IN 3.5%NaCl SOLUTION
Yanxin QIAO1,Yang ZHOU1,Shujin CHEN1(),Qining SONG2
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2 School of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
引用本文:

乔岩欣,周洋,陈书锦,宋亓宁. 双轴肩搅拌摩擦焊对6061-T6铝合金表面组织及其在3.5%NaCl中腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1395-1402.
Yanxin QIAO, Yang ZHOU, Shujin CHEN, Qining SONG. EFFECT OF BOBBIN TOOL FRICTION STIR WELDING ON MICROSTRUCTURE AND CORROSION BEHAVIOR OF 6061-T6 ALUMINUM ALLOY JOINT IN 3.5%NaCl SOLUTION[J]. Acta Metall Sin, 2016, 52(11): 1395-1402.

全文: PDF(1356 KB)   HTML
摘要: 

采用双轴肩搅拌摩擦焊(BTFSW)技术对7.8 mm厚6061-T6铝合金进行了焊接, 对焊接接头各部分的微观组织和截面显微硬度进行了分析, 并对母材和焊核在3.5%NaCl溶液中的腐蚀电化学行为和腐蚀产物膜进行了研究. 结果表明, BTFSW后焊缝表面质量良好, 热-机影响区晶粒发生再结晶和塑性变形, 部分再结晶晶粒发生了伸长和弯曲; 热影响区的部分晶粒在热循环的作用下发生粗化, 焊核呈细小的等轴晶组织; 焊接接头中前进侧热-机影响区硬度最低; 在3.5%NaCl溶液中, 6061-T6铝合金的极化曲线表现为阳极溶解和点蚀, 母材和焊核区的电化学阻抗谱均由容抗弧和感抗弧组成, BTFSW后6061铝合金的腐蚀电流降低; 浸泡480 h后, 呈疖状腐蚀的特征, 腐蚀产物为Al(OH)3和Al2O3. BTFSW可提高6061-T6铝合金的耐蚀性.

关键词 腐蚀,铝合金,双轴肩搅拌摩擦焊,微观组织    
Abstract

Friction stir welding (FSW) is a new solid-state joining method which offers several advantages compared with conventional welding methods, including better mechanical properties, lower residual stress and reduced occurrence of defects. It has already been used for joining Al alloys in the aerospace and automotive industries. In spite of the advantages, FSW also has drawbacks, such as the risk of root flaws in single-side welds. Using a bobbin tool instead is a promising way to solve this problem since the root region is avoided. Compared with standard (single-side) FSW techniques, the bobbin tool FSW has an extra shoulder attached to the tip of the probe, namely the lower shoulder. This setup makes BTFSW capable of joining closed profiles like hollow extrusions. Furthermore, root flaws, such as lack of penetration, which occasionally occurred in standard FSWtechiques, can be completely avoided. In this work, 6061-T6 aluminum alloy was welded by using bobbin tool friction stir weld (BTFSW). The influence of BTFSW on the microstructure development and hardness distribution in the weldment has been investigated. The corrosion behaviors of the base metal and weld nugget in 3.5%NaCl (mass fraction) solution were investigated using SEM, XRD and electrochemical measurements. The results showed that the weld surface of 6061-T6 welded by BTFSW is of good quality. No welding defect was detected in the joints. Three microstructural zones, i.e., nugget zone, thermo-mechanically affected zone, and heat affected zone were discernible. The microstructural analysis indicates that the weld nugget region exhibited fine and equiaxed grain structure with an average grain size of ~8 μm, indicating the occurrence of dynamic recrystallization due to severe plastic deformation and thermal exposure. The thermo-mechanically affected zone underwent plastic deformation and recrystallization occured in this zone due to deformation strain and thermal input. The low hardness zone, determined by constructing the hardness distribution profile on cross-section of joint, located at thermo-mechanically affected zone of advancing side. Although 6061-T6 alloys are readily weldable, they suffered from severe softening in the heat affected zone because of the dissolution of Mg2Si precipitates during the weld thermal cycle. BTFSW can improve the corrosion resistance of 6061-T6 aluminum alloy in 3.5%NaCl solution. The corrosion behavior results showed that both anodic dissolution and pitting were observed after the immersion test due to the inhomogeneous microstructure of 6061-T6 aluminum alloy. The corrosion products mainly composed of Al(OH)3 and Al2O3. Furthermore, the corrosion process and mechanism were also discussed.

Key wordscorrosion,    aluminum    alloy,    bobbin    tool    friction    stir    welding,    microstructure
收稿日期: 2016-01-13     
基金资助:* 国家自然科学基金项目51401092和51575252以及51205175和江苏科技大学博士基金资助
图1  间距可调式BTFSW
图2  BTFSW后6061-T6铝合金截面显微硬度和腐蚀实验取样示意图[25]
图3  6061-T6铝合金BTFSW后焊缝的上下表面形貌
图4  6061-T6铝合金BTFSW后焊接接头截面宏观形貌
图5  6061-T6铝合金BTFSW后焊接接头的母材、焊核和各热影响区的微观组织
图6  6061-T6 铝合金BTFSW焊接接头截面显微硬度
图7  6061-T6铝合金母材和经BTFSW后焊核在3.5%NaCl溶液中的极化曲线
图8  6061-T6铝合金母材和焊核在3.5%NaCl溶液中的Nyquist图
Point Mass fraction / % Atomic fraction / %
O Mg Al Si Cl O Mg Al Si Cl
1 32.30 0.47 66.60 0.37 0.26 44.59 0.43 54.52 0.29 0.16
2 61.06 - 38.27 0.33 0.34 72.61 - 26.98 0.22 0.18
3 31.33 2.61 73.74 1.31 1.01 43.48 2.39 52.46 1.03 0.63
4 66.68 - 32.23 0.47 0.62 77.23 - 22.13 0.31 0.32
表1  6061-T6铝合金母材和焊核表面腐蚀产物的EDS分析
图9  6061-T6铝合金母材和焊核在3.5%NaCl溶液中浸泡480 h后的表面形貌
图10  6061-T6铝合金母材和焊核在3.5%NaCl溶液中浸泡480 h后表面腐蚀产物的XRD谱
[1] Marzoli L M, Strombeck A V, Santos J F D, Gambaro C, Volpone L M.Compos Sci Technol, 2006; 66: 363
[2] Hong S J, Kim S S, Lee C G, Kim S J.Scr Mater, 2006; 55: 1007
[3] Zhao Y, Fu J, Zhang P L, Yan K, Jiang C Y.J Jiangsu Univ Sci Technol (Nat Sci Ed), 2006; 20(1): 90
[3] (赵勇, 付娟, 张培磊, 严铿, 蒋成禹. 江苏科技大学学报(自然科学版), 2006; 20(1): 90)
[4] Tong J H, Li L, Deng D, Wan F R.J Univ Sci Technol Beijing, 2008; 30: 1011
[4] (佟建华, 李炼, 邓冬, 万发荣. 北京科技大学学报, 2008; 30: 1011)
[5] Wang D, Wang Q Z, Xiao B L, Ni D R, Ma Z Y.Acta Metall Sin, 2014; 50: 489
[5] (王东, 王全兆, 肖伯律, 倪丁瑞, 马宗义. 金属学报, 2014; 50: 489)
[6] Liu F J, Fu L, Zhang W Y, Meng Q, Dong C L, Luan G H.Acta Metall Sin, 2015; 51: 281
[6] (刘奋军, 傅莉, 张纹源, 孟强, 董春林, 栾国红. 金属学报, 2015; 51: 281)
[7] Somasekharan A C, Murr L E.Mater Charact, 2004; 53: 19
[8] Xu W F, Liu J H, Chen D L.Acta Metall Sin, 2015; 51: 587
[8] (徐韦锋, 刘金合, CHEN Daolun. 金属学报, 2015; 51: 587)
[9] Ren S R, Ma Z Y, Chen L Q, Zhang Y Z.Acta Metall Sin, 2007; 43: 225
[9] (任淑荣, 马宗义, 陈礼清, 张玉政. 金属学报, 2007; 43: 225)
[10] Yan D Y, Shi Q Y, Wu A P, Juergen S, Liu Y, Zhang Z L.Acta Metall Sin, 2009; 45: 183
[10] (鄢东洋, 史清宇, 吴爱萍, Juergen Silvanus, 刘园, 张增磊. 金属学报, 2009; 45: 183)
[11] Xu W F, Liu J H, Luan G H, Dong C L.Acta Metall Sin, 2009; 45: 490
[11] (徐韦锋, 刘金合, 栾国红, 董春林. 金属学报, 2009; 45: 490)
[12] Liu H J, Fujii H, Maeda M, Nogi K.J Mater Sci Lett, 2003; 22: 1061
[13] Hilgert J, Schmidt H N B, dos Santos J F, Huber N.J Mater Process Technol, 2011; 211: 197
[14] Sued M K, Pons D, Lavroff J, Wong E H.D.Mater Des, 2014; 54: 632
[15] Paglia C S, Buchheit R G.Scr Mater, 2008; 58: 383
[16] Lafly A-L, Allehaux D, Marie F, Donne C D, Doker H.J Int Inst Weld, 2005; 49: 444
[17] Chen Y C, Nakata K.Mater Des, 2009; 30: 469
[18] Kumbhar N T, Sahoo S K, Samajdar I, Dey G K,Mater Des, 2011; 32: 1657
[19] Thomas W M, Wiesner C S, Marks D J, Staines D G.Sci Technol Weld Joining, 2009; 14: 247
[20] Corral J, Trillo E A, Li Y, Murr L E.J Mater Sci Lett, 2002; 19: 2117
[21] Gharavi F, Matoria K, Yunus R, Othman N, Fadaeifard F.J Mater Res Technol, 2015; 4: 314
[22] Emilie B, Angéline P Q, Monique P, Olivier D, Marie T.Corros Sci, 2011; 53: 3026
[23] Kang J, Fu R D, Luan G H, Dong C L, He M.Corros Sci, 2010; 52: 620
[24] Gupta R K, Das H, Pal T K.J Mater Eng Perform, 2012; 21: 1645
[25] Feng A H, Chen D L, Ma Z Y.Metall Mater Trans, 2010; 41A: 2626
[26] Yutaka S S, Mitsunori U, Hiroyuki Ka, Keisuke I.Mater Sci Eng, 2003; A354: 298
[27] Elangovan K, Balasubramanian V.Mater Des, 2008; 29: 362
[28] Liu F C, Ma Z Y.Metall Mater Trans, 2008; 39A: 2378
[29] Rajesh K G, Hrishikesh D, Tapan K P.J Mater Eng Perform, 2012; 21: 1645
[30] Zhou K, Wang B, Zhao Y, Liu J.Trans Nonferrous Met Soc China, 2015; 25: 2509
[31] Wang X H, Wang J H, Fu C W.Trans Nonferrous Met Soc China, 2014; 24: 3907
[32] Singh A K, Quraishi M A.Corros Sci, 2010; 52: 152
[33] Pardo A, Merino M C, Coy A E, Viejo F, Jr Arrabal R S F.Electrochim Acta, 2008; 53: 7890
[34] He J G, Wen J B, Li X D.Corros Sci, 2011; 53: 1948
[35] Ghods P, Isgor O B, McRae G A, Li J, Gu G P.Corros Sci, 2011; 53: 946
[36] Chen J, Wang J Q, Han E-H, Dong J H, Ke W.Electrochim Acta, 2007; 52: 3299
[37] Tan L, Allen T R.Corros Sci, 2010; 52: 548
[38] Yasakau K A.Electrochim Acta, 2007; 52: 7651
[39] Zhang J, Zhang T, Shao Y W, Meng G Z, Wang F H.Corros Sci Prot Technol, 2014; 26: 125
[39] (张晋, 张涛, 邵亚薇, 孟国哲, 王福会. 腐蚀科学与防护技术, 2014; 26: 125)
[40] Sun F L, Li X G, Lu L, Cheng X Q, Dong C F, Gao J.Acta Metall Sin, 2013; 49: 1219
[40] (孙飞龙, 李晓刚, 卢琳, 程学群, 董超芳, 高瑾. 金属学报, 2013; 49: 1219)
[41] Seetharaman R, Ravisankar V, Balasubramanian V.Trans Nonferrous Met Soc China, 2015; 25: 1427
[42] Voskov A L, Voronin G F.Russ J Phys Chem, 2010; 80A: 6105
[43] Nady H, Helal N H, El-Rabiee M M, Badawy W A.Mater Chem Phys, 2012; 134: 945
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[7] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[8] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[9] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[10] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[11] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[12] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[13] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[14] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.