Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 889-896    DOI: 10.11900/0412.1961.2015.00210
  本期目录 | 过刊浏览 |
SiCp/Al复合材料热轧过程的有限元模拟*
周丽1,2,王唱舟1,张星星2,肖伯律2,马宗义2()
2 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
FINITE ELEMENT SIMULATION OF HOT ROLLING PROCESS FOR SiCp/Al COMPOSITES
Li ZHOU1,2,Changzhou WANG1,Xingxing ZHANG2,Bolü XIAO2,Zongyi MA2()
1 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016
引用本文:

周丽,王唱舟,张星星,肖伯律,马宗义. SiCp/Al复合材料热轧过程的有限元模拟*[J]. 金属学报, 2015, 51(7): 889-896.
Li ZHOU, Changzhou WANG, Xingxing ZHANG, Bolü XIAO, Zongyi MA. FINITE ELEMENT SIMULATION OF HOT ROLLING PROCESS FOR SiCp/Al COMPOSITES[J]. Acta Metall Sin, 2015, 51(7): 889-896.

全文: PDF(2548 KB)   HTML
摘要: 

运用热-力耦合有限元法对SiCp/2009Al复合材料进行了热轧模拟, 研究了复杂应力状态下的轧制成型过程、温度场、变形场及应力场分布, 得到了轧制过程中表面和中心区域的温度、应力、应变以及应变率的变化曲线, 从而可以更好地理解复合材料的热轧机理. 模拟结果表明: 在轧制入口处, 最大主应力由压应力向拉应力转变, 与出口处变化规律相反. 在轧制稳定阶段, 变形区的最大主应力则以压应力为主; 轧板表面的热传递温降效应远大于摩擦温升效应, 而轧板中心温度主要由塑性变形温升效应控制; 此外, 在轧制入口和出口处, 应变率对流动应力的贡献起主导作用; 在轧板变形区, 轧板表面的流变应力主要由应变和温度决定, 但表面黏着区是由应变率控制; 轧板中心的流动应力在变形区主要受温度影响.

关键词 轧制流变行为复合材料有限元    
Abstract

In this work, the hot rolling process of SiCp/2009Al composites is simulated using the fully coupled thermal-stress analysis in Abaqus/Explicit. By the investigation of formation process for rolling along with different fields of temperature, strain rate, strain and stress and their evolutionary history, the hot rolling mechanisms under complicated stress states is achieved. The results show that the maximum principal stress changes from compressive stress to tensile stress at the stage of rolling entrance and a reverse trend replaces it at the exit, and that the compressive stress is dominant in the deformation zone at the steady rolling stage. The temperature drop effect due to heat transfer is far greater than the temperature rise effect due to friction on the plate surface while the temperature rise is embodied in the center due to plastic deformation. Besides, the effect of strain rate on flow stress plays a leading role at the entrance and exit stage, and the flow stress on the plate surface in the deformation region is mainly determined by strain and temperature except the stick zone which is controlled by strain rate, however, the center flow stress in deformation is mainly affected by temperature.

Key wordsrolling    rheological behavior    composites    finite element
    
基金资助:* 国家重点基础研究发展计划资助项目2012CB619600
图1  轧制有限元模型
图2  SiCp/2009Al 复合材料的显微结构
Thermo-physical parameter Value Unit
Young's modulus E 101 GPa
Poisson's ratio ν 0.34
Density ρ 2818 kgm-3
Thermal conductivity K 175 Wm-1-1
Coefficient of thermal expansion φ 17.2 × 10-6 -1
Specific heat cp 900 Jkg-1-1
表1  SiCp/2009Al复合材料热物理性能[22,23]
图3  不同网格尺寸下轧制力随时间变化曲线
图4  轧制力随网格尺寸变化曲线
图5  选取路径图
图6  质量缩放因子对等效应力的影响
图7  SiCp/2009Al轧制成型过程中绝对最大主应力分布
图8  轧制温度场及表面和中心温度随时间变化曲线
图9  轧制应变场及表面和中心应变随时间变化曲线
图10  轧制速度场
图11  等效应变率随时间变化曲线
图12  等效应力场及表面和中心应力随时间变化曲线
[1] Selvam J D R, Smart D S R, Dinaharan I. Mater Des, 2013; 49: 28
[2] Mortensen A, Llorca J. Annu Rev Mater Res, 2010; 40: 243
[3] Wang S S, Mao C H, Yang J, Liang Q S, Sun B. Chin J Rare Met, 2012; 36: 167 (汪山山, 毛昌辉, 杨 剑, 梁秋实, 孙 波. 稀有金属, 2012; 36: 167)
[4] Hassani A, Bagherpour E, Qods F. J Alloys Compd, 2014; 591: 132
[5] Balasubramanian I, Maheswaran R. Mater Des, 2015; 65: 511
[6] Liu J W, Zheng Z X, Wang J M, Wu Y C, Tang W M, Lu J. J Alloys Compd, 2008; 465: 239
[7] El-Sabbagh A, Solimam M, Taha M, Palkowski H. J Mater Process Technol, 2012; 212: 497
[8] Goswami R K, Sikand R, Dhar A, Grover O P, Jindal U C, Gupta A K. Mater Sci Technol, 1999; 15: 443
[9] El-Sabbagh A,?Soliman M,?Taha?M,?Palkowski H. J Mater Process Technol, 2013; 213: 1669
[10] Euh K, Kang S B. Mater Sci Eng, 2005; A395: 47
[11] Liu X H. Acta Metall Sin, 2010; 46: 1025 (刘相华. 金属学报, 2010; 46: 1025)
[12] Shahani A R, Setayeshi S, Nodamaie S A, Asadi M A, Rezaie S. J Mater Process Technol, 2009; 209: 1920
[13] Duan X J, Sheppard T. J Mater Process Technol, 2004; 150: 100
[14] Yu H L, Jiao Z J, Liu X H, Zhao X M. J Mater Metall, 2005; 4(1): 70 (喻海良, 矫志杰, 刘相华, 赵宪明. 材料与冶金学报, 2005; 4(1): 70)
[15] Arif A F M, Khan O, Sheikh A K. J Mater Process Technol, 2004; 147: 255
[16] Kan Y, Liu Z G, Zhang S H, Zhang L W, Cheng M, Song H W. Chin J Rare Met, 2015; 39(4): 289 (阚 盈, 刘振刚, 张士宏, 张立文, 程 明, 宋鸿武. 稀有金属, 2015; 39(4): 289)
[17] Shao J C, Xiao B L, Wang Q Z, Ma Z Y, Liu Y, Yang K. Mater Sci Eng, 2010; A527: 7865
[18] Xu H, Zhang X, Li H W, Li S, Wang C S, Wang Y L, Zhang B D. J Wuhan Univ Technol—Mater Sci Ed, 2012; 27: 443
[19] Serajzadeh S, Karimi T A, Nejati M, Izadi J, Fattahi M. J Mater Process Technol, 2002; 128: 88
[20] Yaakoubi M, Kchaou M, Dammak F. Comp Mater Sci, 2013; 68: 297
[21] Chen J, Chandrashekhara K, Mahimkar C, Lekakh S N, Richards V L. J Mater Process Technol, 2011; 211: 245
[22] Zhu Y, Kishawy H A. Int J Mach Tools Manuf, 2005; 45: 389
[23] Tan Y Q, Yang D M, Sheng Y. J Eur Ceram Soc, 2009; 29: 1029
[24] Ducobu F, Rivière-Lorphèvre E, Filippi E. Simul Modell Pract Theory, 2015; 53: 1
[25] Cocchetti G, Pagani M, Perego U. Comp Struct, 2013; 127: 39
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[3] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[7] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[8] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[9] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[10] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[11] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[12] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[15] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.