Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 913-919    DOI: 10.11900/0412.1961.2014.00709
  本期目录 | 过刊浏览 |
热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响*
王存宇1,常颖2(),杨洁3,赵坤民2,董瀚1
2 大连理工大学汽车工程学院工业装备结构分析国家重点实验室, 大连 116024
3 长城汽车股份有限公司技术中心, 保定 071000
THE COMBINED EFFECT OF HOT DEFORMATION PLUS QUENCHING AND PARTITIONING TREATMENT ON MARTENSITE TRANSFORMATION OF LOW CARBON ALLOYED STEEL
Cunyu WANG1,Ying CHANG2(),Jie YANG3,Kunmin ZHAO2,Han DONG1
1 East China Branch of Central Iron & Steel Research Institute, Beijing 100081
2 State Key Laboratory of Industrial Equipment Structural Analysis, School of Automotive Engineering, Dalian University of Technology, Dalian 116024
3 Technology Center, Great Wall Motor Company Limited, Baoding 071000
引用本文:

王存宇,常颖,杨洁,赵坤民,董瀚. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响*[J]. 金属学报, 2015, 51(8): 913-919.
Cunyu WANG, Ying CHANG, Jie YANG, Kunmin ZHAO, Han DONG. THE COMBINED EFFECT OF HOT DEFORMATION PLUS QUENCHING AND PARTITIONING TREATMENT ON MARTENSITE TRANSFORMATION OF LOW CARBON ALLOYED STEEL[J]. Acta Metall Sin, 2015, 51(8): 913-919.

全文: PDF(6986 KB)   HTML
摘要: 

利用热变形和两步淬火配分(quenching and partitioning, Q&P)工艺的复合作用制备低碳合金钢试样, 设计不同的热变形温度, 研究加载(获得30%变形量)引起的应力和塑性变形对Q&P工艺下马氏体相变开始温度(Ms), 残余奥氏体含量和力学性能的影响. 结果表明, 与传统两步Q&P工艺相比, 复合作用下显微组织细化, 尤其是随着变形温度的降低细化更明显, 马氏体板条呈现弯曲形貌. 随着变形温度升高, Ms升高, 但马氏体转变量却有所下降, 其原因是应力引起的位错多在奥氏体母相晶界处出现, 成为马氏体相变优先形核的位置, 而一旦发生相变, 一定的塑性应变将提高晶内奥氏体的稳定性, 从而促进残余奥氏体含量增加. 复合作用下试样的力学性能也有所提高, 在650 ℃变形时试样的硬度最高, 而在750 ℃变形时试样的塑性最好.

关键词 热变形淬火配分马氏体相变应力    
Abstract

A combined process of hot deformation with different deformation temperatures plus two step quenching and partitioning (Q&P) treatment was applied to low carbon alloyed steel. The effect of stress (30% plastic deformation) on the start temperature of martensite transformation (Ms), volume fraction of retained austenite and mechanical properties was analyzed. It found that comparing with specimen treated by conventional two-step Q&P process, the microstructure of steel treated by combined process was finer and finer with the decreasing hot deformation temperature, and the typical curved micromorphology of martensite exists. Moreover, the Ms of specimen treated by combined process is increased with the increasing of deformation temperature. The effect of stress on the Ms can be attributed to the effect of stress on the grain boundaries of austenitic parent phase, where a large amount of dislocation induced by the stress is prior to occur so as to promote formation of martensite. However, the stability of untransformed austenite was improved by the plastic deformation when matensite transformed so as to get the more retained austenite (the highest volume fraction of retained austenite obtained by combined process of hot deformation at 750 ℃ is 17.2%). Moreover, the mechanical properties were improved by the combined process, namely, the highest hardness of specimen were obtained when hot deformation at 650 ℃ and the highest plasticity were obtained when hot deformed at 750 ℃.

Key wordshot deformation    quenching and partitioning    martensite transformation    stress
    
基金资助:* 国家重点基础研究发展计划项目2010CB630803, 国家自然科学基金项目51101036, 51201093和11472072, 中央高校基本科研业务费项目DUT15QY09及辽宁省自然科学基金项目2014028001资助
图1  热变形+淬火配分(Q&P)处理的工艺流程
图2  单轴拉伸试样尺寸图
图3  原位观察降温时马氏体优先形核位置和相变形核长大过程
图4  热变形+Q&P工艺和传统Q&P工艺处理后显微组织的SEM像
图5  不同温度热变形+Q&P处理和传统Q&P处理的板条马氏体和残余奥氏体的TEM像
图6  热变形温度对马氏体相变开始温度Ms的影响
图7  不同工艺制得试样的单轴拉伸曲线
[1] Briant C L, Banerji S K. Metall Trans, 1979; 10A: 1729
[2] Lee W S, Su T T. J Mater Process Technol, 1999; 87: 198
[3] Salemi A, Abdollah-Zadeh A. Mater Charact, 2008; 59: 484
[4] Matlock D K, BrautigamV E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[5] Speer J, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[6] Santofimia M J, Speer J G, Clarke A J, Zhao L, Sietsma J. Acta Mater, 2009; 57: 4548
[7] Wang C Y, Shi J, Cao W Q, Hui W J, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 720 (王存宇, 时 捷, 曹文全, 惠卫军, 王毛球, 董 瀚, 金属学报, 2011; 47: 720)
[8] Clarke A J, Speer J G, Matlock D K, Rizzo F C, Edmonds D V, Santofimia M J. Scr Mater, 2009; 61: 149
[9] Rizzo F, Martins A R, Speer J G. Mater Sci Forum, 2007; 539-543: 4476
[10] Wang C Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2011; A527: 3442
[11] Cheng L, Wu K M, Wan X L, Wei R. Mater Charact, 2014; 87: 86
[12] Marder A R, Krauss G. Trans ASM, 1969; 69: 957
[13] Hao Q G, Wang Y, Jia X S, Zuo X W, Chen N L, Rong Y H. Acta Metall Sin (Engl Lett), 2014; 27: 444
[14] Hsu T Y, Jin X J, Rong Y H. J Alloys Compd, 2013; 577: S568
[15] Xiong X C, Chen B, Huang M X, Wang J F, Wang L. Scr Mater, 2013; 68: 321
[16] Speer J G, Matlock D K. World Iron Steel, 2009; 1: 31
[17] Chandra T, Ionescu M, Mantovani D. Mater Sci Forum, 2012; 706-709: 2824
[18] Zhou S, Zhang K, Chen N L, Gu J F, Rong Y H. ISIJ Int, 2011; 51: 1688
[19] Thomas G A, Speer J G, Matlock D K. Metall Mater Trans, 2011; 42A: 3652
[20] Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59
[21] Guimaraes J R C, Shyne J C. Metall Trans, 1973; 2: 2063
[22] Wang C Y. PhD Dissertation, Central Iron & Steel Research Institute, Beijing, 2010 (王存宇. 钢铁研究总院博士学位论文, 北京, 2010)
[23] Olson G B, Cohen M. J Less-Common Met, 1972; 28: 107
[24] Hsu T Y. Martensitic Transformation and Martensite. 2nd Ed., Beijing: Science Press, 1999: 690 (徐祖耀. 马氏体相变与马氏体. 第二版, 北京: 科学出版社, 1999: 690)
[25] Liu C C, Yao K F, Gao G F, Liu Z. Acta Metall Sin, 1999; 35: 1125 (刘春成, 姚可夫, 高国峰, 刘 庄. 金属学报, 1999; 35: 1125)
[26] Zhang Y J, Wang C Y, Liu W Z, Cao W Q. Trans Met Heat Treat, 2013; 34(5): 97 (张玉杰, 王存宇, 刘文忠, 曹文全. 材料热处理学报, 2013; 34(5): 97)
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[6] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[7] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[11] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[12] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[13] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[14] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.