Please wait a minute...
金属学报  2014, Vol. 50 Issue (9): 1031-1038    DOI: 10.11900/0412.1961.2013.00836
  本期目录 | 过刊浏览 |
定向凝固DZ444镍基高温合金初生MC碳化物的分解行为
肖旋1, 曾超1,2, 侯介山2, 秦学智2, 郭建亭2, 周兰章2()
1 沈阳理工大学材料科学与工程学院, 沈阳110159
2 中国科学院金属研究所, 沈阳110016
THE DECOMPOSITION BEHAVIOR OF PRIMARY MC CARBIDE IN NICKEL BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ444
XIAO Xuan1, ZENG Chao1,2, HOU Jieshan2, QIN Xuezhi2, GUO Jianting2, ZHOU Lanzhang2()
1 School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

肖旋, 曾超, 侯介山, 秦学智, 郭建亭, 周兰章. 定向凝固DZ444镍基高温合金初生MC碳化物的分解行为[J]. 金属学报, 2014, 50(9): 1031-1038.
Xuan XIAO, Chao ZENG, Jieshan HOU, Xuezhi QIN, Jianting GUO, Lanzhang ZHOU. THE DECOMPOSITION BEHAVIOR OF PRIMARY MC CARBIDE IN NICKEL BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ444[J]. Acta Metall Sin, 2014, 50(9): 1031-1038.

全文: PDF(6240 KB)   HTML
摘要: 

研究了定向凝固镍基高温合金DZ444在800, 850和900 ℃下最长达104 h长期时效过程中初生MC碳化物的热稳定性、MC分解机制及其分解对组织演化的影响. 结果表明: DZ444合金初生MC碳化物的热稳定性较低. 在长期时效过程中, MC分解不断加剧; 同时, MC分解区域内产物不断发生变化, 在MC分解初期产生了典型的SM结构(sandwich microstructure), 在MC分解中期出现了h相, 在MC分解末期析出一定量的h-M6C和h-M23C6. MC分解过程可以大体地描述为: MC+g→SM-M23C6+SM-M6C+SM-g'→SM-M23C6+SM-M6C+SM-g'+h→SM-M23C6+SM-M6C+SM-g'+h+h-M6C+h-M23C6, 其中二次碳化物的类型主要为M23C6, 且随着时效温度的升高和时效时间的延长, 二次M6C含量略有增加. MC的分解能够促进晶内M23C6沉淀、s相析出和晶界粗化.

关键词 定向凝固高温合金初生MC碳化物分解机制显微组织    
Abstract

Hot-corrosion directionally solidified Nickel base superalloy DZ444 is generally used as the candidate material for blade of gas turbine, which required excellent alloy microstructural stability. As one of the constitutional phase of the alloy, primary MC carbides are often thermally unstable, and its degradation reactions can happen when the alloys are in services or thermally exposed in high temperature circumstances. There existed several different kinds of MC decompostion reactions in some traditional Ni-based superalloys. To figure out the thermal stability of primary MC carbide in the DZ444 alloy and better understand its degradation mechanism, some related discussions to the thermal stability and degeneration process of primary MC carbide and its effects on the microstructure were made. In this work, microstructures of DZ444 alloy after long-term exposure up to 1×104 h at 800, 850 and 900 ℃ have been observed by OM, SEM and TEM. The results show that the thermal stability of MC was low. As long-term exposure proceeds, MC decompostion became more and more serious. Firstly, a typical sandwich microstructure (SM) gradually formed and thickened in the MC/g interface; secondly, h phase precipitated in the SM/MC interface; lastly, h-M6C and h-M23C6 locally precipitated inside the h phase. Finally, SM structure, h phase, h-M6C and h-M23C6 successively formed in MC degeneration areas at three stages of its decomposition process. Basically, MC decompostion process could be described with such raction formula as follows: MC+g→SM-M23C6+SM-M6C+SM-g'→SM-M23C6+SM-M6C+SM-g'+h→SM-M23C6+SM-M6C+SM-g'+h+h-M6C+h-M23C6. Generally, the type of secondary carbide from MC degeneration was M23C6, and, with the increase of long-term exposure temperature and time, the amount of secondary M6C carbide slightly increased. Besides, MC degeneration might result in the precipitation of transgranular M23C6 carbide and s phase in the vicinity of MC degeneration areas, and the coarsening of grain boundary (GB).

Key wordsdirectionally solidified superalloy    primary MC carbide    decompositon mechanism    microstructure
    
ZTFLH:  TG141  
基金资助:*国家自然科学基金资助项目 51001101
作者简介: null

肖旋, 女, 1966年生, 副教授, 博士

图1  DZ444合金初生MC形貌
Composition Ti Ta W Mo Cr Ni Co Hf C
Mass fraction / % 36.49 14.78 19.62 5.60 1.09 2.50 0.62 2.43 16.86
Atomic fraction / % 30.47 3.27 4.27 2.34 0.84 1.71 0.42 0.54 56.15
表1  标准热处理态MC化学成分的EDS分析结果
图2  SM结构的形成与增厚
图3  h相、M6C和M23C6析出形貌和SAED分析
图4  晶内二次碳化物和s相形貌
图5  晶界粗化现象
Composition Ti Ta W Mo
MC 30.47 3.27 4.27 2.34
Alloy 5.46 0.18 1.65 1.25
表2  初生MC和合金的化学成分EDS分析
图6  MC分解区域内SM层厚度随时效时间的变化曲线
图7  MC分解区域示意图
图8  MC分解过程中元素扩散反应示意图
[1] Wang J, Zhou L Z, Sheng L Y, Guo J T. Mater Des, 2012; 39: 55
[2] Qin X Z, Guo J T, Yuan C, Hou J S, Zhou L Z, Ye H Q. Mater Sci Eng, 2012; A543: 121
[3] Guo J T. Materials Science and Engineering for Superalloys I. Beijing: Science Press, 2008: 4
[3] (郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 4)
[4] Collins H E, Quigg R J. Trans ASM, 1968; 61: 139
[5] Wu Q Y, Song H, Swindeman R W, Shingledecker J P, Vasudevan V K. Metall Mater Trans, 2008; 39A: 2569
[6] Zhao S Q, Xie X S, Gaylord S D, Shailesh P J. Mater Des, 2006; 27: 1120
[7] Hou J S, Zhou L Z, Yuan C, Tang Z, Guo J T, Qin X Z, Liaw P K. Mater Sci Eng, 2013; A560: 25
[8] Choi B G, Kim I S, Kim D H, Jo C Y. Mater Sci Eng, 2008; A478: 329
[9] Huang X B, Kang Y, Zhou H H, Zhang Y, Hu Z Q. Mater Lett, 1998; 36: 210
[10] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361: 191
[11] He L Z, Zheng Q, Sun X F, Hou G C, Guan H R, Hu Z Q. Mater Sci, 2005; 40: 2959
[12] Qin X Z, Guo J T, Yuan C, Chen C L, Hou J S, Ye H Q. Mater Sci Eng, 2008; A485: 75
[13] Hou J S, Guo J T, Yang G X, Zhou L Z, Qin X Z, Ye H Q. Mater Sci Eng, 2008; A498: 449
[14] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; 37: 237
[15] Nazmy M, Staubli M. Scr Metall Mater, 1990; 24: 135
[16] Wang J, Zhou L Z, Qin X Z, Sheng L Y, Hou J S, Guo J T. Mater Sci Eng, 2012; A553: 14
[17] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1672
[18] Sims C T, Stoloff N S, Hagel W C. Superalloys II. New York: John Wiley & Sons Inc., 1987: 122
[19] Tawancy H M, Abbas N M, Al-Mana A I, Rhysjones T N. J Mater Sci, 1994; 29: 2445
[20] Qin X Z, Guo J T, Yuan C, Hou J S, Zhou L Z, Ye H Q. Acta Metall Sin, 2010; 46: 216
[20] (秦学智, 郭建亭, 袁 超, 侯介山, 周兰章, 叶恒强. 金属学报. 2010; 46: 216)
[21] Qin X Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
[21] (秦学智. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[22] Cyril W, Water B, Robert F M. J Metall Trans AIME, 1950; 188: 558
[23] Fujiwara K, Horita Z. Acta Mater, 2002; 50: 1578
[24] Minamino Y, Jung S B, Yamane T, Hirao K. Metall Trans, 1992; 23A: 2784
[25] Karunaratne M S A, Carter P, Reed R C. Acta Metall, 2001; 49: 861
[26] Watanable M, Horita Z, Smith D J, McCartney M R, Sano T, Nemoto M. Acta Metall, 1994; 42: 3381
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.