Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 519-526    DOI: 10.11900/0412.1961.2017.00373
Orginal Article Current Issue | Archive | Adv Search |
Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel
Dongjun FAN1, Guangda LU2(), Guikai ZHANG2, Jinchun BAO2, Feilong YANG2, Xin XIANG2, Chang'an CHEN2
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
2 China Academy of Engineering Physics, Mianyang 621907, China
Cite this article: 

Dongjun FAN, Guangda LU, Guikai ZHANG, Jinchun BAO, Feilong YANG, Xin XIANG, Chang'an CHEN. Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel. Acta Metall Sin, 2018, 54(4): 519-526.

Download:  HTML  PDF(2778KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Reduced activation ferritic/martensitic (RAFM) steel is the preferred structural material for test blanket module in fusion reactor. The study of the diffusion transport character of deuterium and tritium in the steel is of great significance for fuel recycling, tritium diffusion control, recovery and safety to China Fusion Engineering Test Reactor (CFETR) item. Two kind of RAFM steels have been developed in China and one of them, China low activation martensitic (CLAM) steel, is chosen to investigate its diffusive transport parameters of deuterium and tritium in this work. By gas-driven permeation experiment between 573 K and 873 K, deuterium transport parameters are measured. The permeability is: ΦD=3.41×10-8exp(-39181/(RT)) (mol/(msPa0.5)), the diffusion coefficient is DD=1.43×10-7exp(-22110/(RT)) (m2/s), the solubility constant is SD=2.38×10-1exp(-17071/(RT)) (mol/(m3Pa0.5)). Between 573 K and 823 K, the permeability of tritium is ΦT=2.50×10-8exp(-38493/(RT)) (mol/(msPa0.5)). According to the isotopes effect rule, the diffusion coefficient and solubility constant of tritium is deduced respectively: DT=1.95×10-7 exp(-22797/(RT)) (m2/s) and ST=1.28×10-1exp(-15696/(RT)) (mol/(m3Pa0.5)). A strange behavior appears in experiments with deuterium: after forced air cooling to the steel, the permeation flux through it quickly rise first and then anomaly lower for hours. The mechanism arousing the phenomenon and effects on use in engineering needs further investigation.

Key words:  deuterium      tritium      RAFM steel      gas-driven permeation     
Received:  05 September 2017     
ZTFLH:  TG142  
Fund: Supported by National Magnetic Confinement Nuclear Fusion Program (No.2015GB109006) and National Natural Science Foundation of China (No.51471154)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00373     OR     https://www.ams.org.cn/EN/Y2018/V54/I4/519

Fig.1  Schematics of the deuterium (a) and tritium (b) permeation experimental box (RAFM steel—reduced activation ferritic/martensitic steel)
Fig.2  Arrhenius plots of the permeability of deuterium ΦD (T—temperature)
Fig.3  Arrhenius plots of the diffusion coefficient of deuterium DD
Material Φ0 EΦ D0 ED Ref.
10-8 molm-1s-1Pa-0.5 kJmol-1 10-8 m2s-1 kJmol-1
CLAM (D) 3.41 39.2 14.3 22.1 This work
CLAM (T) 2.50 38.5 - - This work
ARAA (H) 9.45 47.4 7.6 12.7 [32]
ARAA (D) 9.61 50.1 7.3 14.0 [32]
EUROFER 97 (H) 1.03 37.4 45.7 22.3 [33]
EUROFER 97 (D) 1.53 38.3 15.0 14.5 [10]
OPTIFER-IVb (H) 1.80 39.6 5.5 10.6 [34]
OPTIFER-IVb (D) 1.50 40.3 4.6 11.3 [35]
MANET (H) 2.93 43.1 7.2 13.5 [35]
MANET (D) 2.73 39.9 10.1 13.2 [33]
F82H (H) 4.90 39.3 18.0 14.1 [36]
F82H (D) 4.03 40.8. 10.7 13.9 [37]
CLAM (D) 5.40 46.8 38.1 24.0 [17]
CLF-1 (D) 1.76 43.9 10.2 16.9 [17]
Table 1  Permeability constant (Φ0), permeation activation energy (EΦ), diffusion coefficient constant (D0) and diffusion activation energy (ED) for some kinds of RAFM steels
Fig.4  Arrhenius plots of the permeability of tritium ΦT
Fig.5  Isotopes effect ratio γ between deuterium and tritium from permeation experiment
Fig.6  Time-dependent deuterium permeation flux at 623 K (a) and 723 K (b) with forced air cooling
Fig.7  OM images in CLAM steel samples of virgin material (a), with furnace cooling (b) and with forced air cooling (c)
[1] Jones R H, Heinisch H L, McCarthy K A. Low activation materials [J]. J. Nucl. Mater., 1999, 271-272: 518
[2] Kohno Y, Kohyama A, Hirose T, et al. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation [J]. J. Nucl. Mater., 1999, 271-272: 145
[3] Ehrlich K, Bloom E E, Kondo T. International strategy for fusion materials development [J]. J. Nucl. Mater., 2000, 283-287: 79
[4] Van Der Schaaf B, Gelles D S, Jitsukawa S, et al. Progress and critical issues of reduced activation ferritic/martensitic steel development [J]. J. Nucl. Mater., 2000, 283-287: 52
[5] Ehrlich K. Materials research towards a fusion reactor [J]. Fusion Eng. Des., 2001, 56-57: 71
[6] Muroga T, Gasparotto M, Zinkle S J. Overview of materials research for fusion reactors [J]. Fusion Eng. Des., 2002, 61-62: 13
[7] Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455
[8] Wang P H, Nobuta Y, Hino T, et al.Helium retention and desorption behaviour of reduced activation ferritic/martenstic steel[J]. Plasma Sci. Technol., 2009, 11: 225
[9] Dolinsky Y N, Zouev Y N, Lyasota I A, et al. Permeation of deuterium and tritium through the martensitic steel F82H [J]. J. Nucl. Mater., 2002, 307-311: 1484
[10] Aiello A, Ricapito I, Benamati G, et al.Hydrogen isotopes permeability in Eurofer 97 martensitic steel[J]. Fusion Sci. Technol., 2002, 41: 872
[11] Klueh R L, Alexander D J, Rieth M.The effect of tantalum on the mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel[J]. J. Nucl. Mater., 1999, 273: 146
[12] Huang Q Y, Li C J, Li Y F, et al.R&D status of China low activation martensitic steel [A]. CORPHY-2008[C]. Hefei: Chinese Nuclear Society, 2008: 41(黄群英, 李春京, 李艳芬等. 中国低活化马氏体钢CLAM研究进展 [A].第十二届反应堆数值计算与粒子输运学术会议暨2008年反应堆物理会议[C]. 合肥: 中国核学会, 2008: 41)
[13] Zhao F, Qiao J S, Huang Y N, et al.Effect of irradiation temperature on void swelling of China low activation martensitic steel (CLAM)[J]. Mater. Charact., 2008, 59: 344
[14] Liu S J, Huang Q Y, Peng L, et al.Microstructure and its influence on mechanical properties of CLAM steel[J]. Fusion Eng. Des., 2012, 87: 1628
[15] Wang P H, Fu H Y, Chen J M, et al.Thermal ageing effect on the microstructure and mechanical properties of RAFM steel CLF-1[J]. Prog. Rep. China Nucl. Sci. Technol., 2009, 1: 56(王平怀, 付海英, 谌继明等. 时效处理对低活性铁素体/马氏体钢CLF-1组织及性能的影响[J]. 中国核科学技术进展报告, 2009, 1: 56)
[16] Wang P H, Chen J M, Fu H Y, et al.Technical issues for the fabrication of a CN-HCCB-TBM based on RAFM Steel CLF-1[J]. Plasma Sci. Technol., 2013, 15: 133
[17] Wang B, Liu L B, Xiang X, et al.Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels[J]. J. Nucl. Mater., 2016, 470: 30
[18] Liu L B, Dou T J, Wang B, et al.Thermal desorption behavior of retained deuterium in Chinese RAFM steel[J]. Mater. Rev., 2016, 30(14): 10(刘凌博, 窦天军, 王博等. 中国RAFM钢中驻留氘的热脱附行为研究[J]. 材料导报, 2016, 30(14): 10)
[19] He W B, Chen C A, Wang J J, et al.Exploring of tritium and helium behaviors in RAFM steels[J]. Mater. Rev., 2015, 29(17): 101(何伟波, 陈长安, 王佳佳等. RAFM钢中氚氦行为的研究进展[J]. 材料导报, 2015, 29(17): 101)
[20] Dolinski Y, Lyasota I, Shestakov A, et al. Heavy hydrogen isotopes penetration through austenitic and martensitic steels [J]. J. Nucl. Mater., 2000, 283-287: 854
[21] Zouev Y N, Podgornova I V, Sagaragze V V. Visualization of tritium distribution by autoradiography technique [J]. Fusion Eng. Des., 2000, 49-50: 971
[22] Otsuka T, Shimada M, Kolasinski R, et al.Application of tritium imaging plate technique to examine tritium behaviors on the surface and in the bulk of plasma-exposed materials[J]. J. Nucl. Mater., 2011, 415(suppl.1): S769
[23] Fedorov A V, Van Til S, Magielsen A J, et al.Tritium permeation in EUROFER in EXOTIC and LIBRETTO irradiation experiments[J]. Fusion Eng. Des., 2013, 88: 2918
[24] Jiang G Q, Luo D L, Lu G D, et al.Tritium and Industry Techniques of Tritium [M]. Beijing: National Defense Industry Press, 2007: 54(蒋国强, 罗德礼, 陆光达等. 氚和氚的工程技术 [M]. 北京: 国防工业出版社, 2007: 54)
[25] Pisarev A, Shestakov V, Kulsartov S, et al.Surface effects in diffusion measurements: Deuterium permeation through martensitic steel[J]. Phys. Scr., 2001, T94: 121
[26] Richardson O W.XXV. The solubility and diffusion in solution of dissociated gases[J]. Philos. Mag., 1904, 7: 266
[27] Nakamura H, Isobe K, Nakamichi M, et al.Evaluation of deuterium permeation reduction factor of various coatings deposited on ferritic/martensitic steels for development of tritium permeation barrier[J]. Fusion Eng. Des., 2010, 85: 1531
[28] Crank J.The Mathematics of Diffusion [M]. 2nd Ed., Oxford: Clarendon Press, 1975: 17
[29] Latanision R M, Kurkela M.Hydrogen permeability and diffusivity in nickel and Ni-base alloys[J]. Corrosion, 1983, 39: 174
[30] Sun X K, Xu J A, Li Y Y.Hydrogen permeation behavior in austenitic stainless-steels[J]. Mater Sci. Eng., 1989, A114: 179
[31] Wang P X, Song J S.Helium in Materials and the Permeation of Tritium [M]. Beijing: National Defense Industry Press, 2002: 81(王佩璇, 宋家树. 材料中的氦及氚渗透 [M]. 北京: 国防工业出版社, 2002: 81)
[32] Noh S J, Lee S K, Byeon W J, et al.Transport of hydrogen and deuterium in the reduced activation martensitic steel ARAA[J]. Fusion Eng. Des., 2014, 89: 2726
[33] Esteban G A, Pe?a A, Legarda F, et al.Hydrogen transport and trapping in ODS-EUROFER[J]. Fusion Eng. Des., 2007, 82: 2634
[34] Esteban G A, Perujo A, Douglas K, et al.Tritium diffusive transport parameters and trapping effects in the reduced activating martensitic steel OPTIFER-IVb[J]. J. Nucl. Mater., 2000, 281: 34
[35] Forcey K S, Ross D K, Simpson J C B, et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications[J]. J. Nucl. Mater., 1988, 160: 117
[36] Serra E, Benamati G.Hydrogen behaviour in aged low activation martensitic steel F82H for fusion reactor applications[J]. Mater. Sci. Technol., 1998, 14: 573
[37] Serra E, Perujo A, Benamati G.Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman[J]. J. Nucl. Mater., 1997, 245: 108
[38] Zhang G K, Huang G Q, Hu M J, et al.Stability and clusterization of hydrogen-vacancy complexes in B2-FeAl: Insight from hydrogen embrittlement[J]. RSC Adv., 2017, 7: 11094
[1] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[2] Cheng ZHANG,Xiping SONG,Jingru LIU,Yun YANG,Li YOU. EFFECTS OF DEUTERIUM CONTENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Zr-4 ALLOY[J]. 金属学报, 2016, 52(12): 1572-1578.
[3] Yun YANG,Xiping SONG. INFLUENCE OF ALLOY ELEMENT Cu ON KINETIC MECHANISMS OF DEUTERIUM ABSORPTION IN ZIRCONIUM[J]. 金属学报, 2016, 52(1): 100-104.
[4] ZHANG Hui ZHOU Huan LI Ning LIU Lin. EFFECT OF Ce ON MICROSTRUCTURE AND PROPERTIES OF HOT DIP ALUMINIZED TRITIUM PERMEATION BARRIER[J]. 金属学报, 2011, 47(12): 1527-1534.
[5] HUANG Huogen CHEN Liang LI Rong LUO Deli. THERMAL STABILITY AND DEUTERIUM ABSORPTION AT ROOM TEMPERATURE OF Ti36Zr40Ni20Pd4 QUASICRYSTAL[J]. 金属学报, 2010, 46(5): 629-633.
[6] CHEN Miao LU Guangda ZHANG Guikai ZHANG Yanzhi WANG Xiaoying REN Dapeng. AGING EFFECTS OF TRITIUM ON Pd POWDERS AND Pd91.31Y8.50Ru0.19 ALLOY FILM[J]. 金属学报, 2009, 45(10): 1277-1280.
[7] SUN Dalin;LEI Yongquan;JIANG Jianjun;WU Jing; WANG Qidong Zhejiang Universitylecturer;Department of Materials Science and Engineering;Zhejiang University;Hangzhou 310027. DIFFUSIVITY OF DEUTERIUM AND DEUTERIUM TRAPPING IN PALLADIUM[J]. 金属学报, 1993, 29(8): 67-71.
[8] SUN Dalin; LEI Yongquan; CHEN Yanglin; WU Jing; WANG Qidong (Zhejiang University; Hangzhou). MECHANISM OF DEUTERIUM CRACKING IN PALLADIUM[J]. 金属学报, 1992, 28(10): 36-40.
No Suggested Reading articles found!