Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 440-448    DOI: 10.11900/0412.1961.2014.00349
Current Issue | Archive | Adv Search |
THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS
LU Yunfei(), YANG Jingfeng, DONG Junhua, KE Wei
Environmental Corrosion Research Center of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LU Yunfei, YANG Jingfeng, DONG Junhua, KE Wei. THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS. Acta Metall Sin, 2015, 51(4): 440-448.

Download:  HTML  PDF(3504KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behaviour of low alloy steel containing Ni and Cu was studied because it is a promising candidate canister material for the disposal of high-level radioactive waste (HLW) in China. Due to the intensely radioactive nature of HLW, the waste has to be prevented from reaching the biosphere for many tens of thousands of years. Deep geological disposal is now considered to be the most preferable option for isolating HLW and it relies on series of natural and engineered barriers, e.g. a metallic canister. However, as soon as the waste package is settled, groundwater would seep back slowly through the outer barriers and ultimately arrive at the surface of the canister. Accordingly, there comes the groundwater-induced dissolution of the canister and subsequent transport of radionuclides through the barriers. That is to say, the effectiveness of radionuclide retention and isolation depends mostly and finally on the corrosion resistance of metallic canisters in deep groundwater environments. In this work, the test solution is deaerated 0.1 mol/L NaHCO3+0.1 mol/L NaCl, simulating the deep groundwater environment. The evolution of corrosion of NiCu low alloy steel in the test solution was investigated by electrochemical measurements. XRD was used to illustrate the composition of formed corrosion products. SEM was used to observe the electrode surface morphology and the cross section of the rust layer. The electrochemical results showed that low alloy steel has a lower corrosion rate and is less prone to localized corrosion than low carbon steel. In order to understand the mechanism of alloying elements, EDS and EPMA were used to analyse the distribution of alloying elements cross-sectional. XPS and E-pH diagram were used to estimate the possible existence form of alloying elements. By means of EDS and EPMA, it was founded that Ni is concentrated in the inner rust layer while the enrichment of Cu is not so obvious. XRD, XPS and E-pH results indicated that Ni and Cu are existed in the form of NiFe2O4 and CuFeO2 respectively.

Key words:  low alloy steel      rust      HCO3-      Cl-     
ZTFLH:  TF777.1  
Fund: Supported by National Natural Science Foundation of China (No.51471175)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00349     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/440

Steel Ni Cu Cr Al C Si Mn S P Fe
NiCu 3.00 0.30 - - 0.21 0.21 0.58 0.0036 0.017 Bal.
Q235 0.01 0.01 0.01 0.02 0.18 0.25 0.50 0.0180 0.016 Bal.
Table 1  Chemical compositions of the NiCu low alloy steel and Q235 low carbon steel
Fig.1  Polarisation curves (dashed lines) and evolution curves of open circuit potential (solid lines) of NiCu low alloy steel (a) and low carbon steel[10] (b)
Fig.2  Bode phase plots (a, c) and Bode impedance plots (b, d) of NiCu low alloy steel (a, b) and Q235 low carbon steel (c, d) as a function of immersion time in test solutions
Fig.3  Equivalent circuit for fitting the electrochemical impedance spectra (EIS) data measured in stage I (a) and stage II and III (b) (QHF—capacitance caused by high frequency phse shift, Re—electrolyte resistance, Qdl—double layer capacitance, Rct—charge transfer resistance, W—Warburg impedance, Qcp—capacitance of precipitated corrosion products layer, Rcp—resistance of precipitated corrosion products layer, Qpit—capacitance of pitted area, Rpit—resistance of pitted area, Qpassive—capacitance of passive area, Rpassive—resistance of passive area)
Steel Time
Y0,HF
nHF Re
Y0,dl
ndl Rct
Y0,W
d S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2 S·s0.5·cm-2
NiCu 1 - - 17.61 0.0002497 0.8092 3280 0.03069
4 - - 13.40 0.0005871 0.8940 2234 0.01435
10 - - 10.13 0.0018340 0.8986 1291 0.02672
Q235 4 2.974×10-8 1 22.47 0.0003375 0.8380 1895 0.02753
10 2.902×10-8 1 22.61 0.0004578 0.8510 2229 0.04776
17 3.365×10-8 1 22.52 0.0006121 0.8304 1962 0.05585
Table 2  Fitted results for EIS data measured during stage I
Fig.4  Low (a) and high (b) magnified surface morphologies of NiCu low alloy steel after immersion for 28 d in the test solution
Steel Time Y0,HF Re Y0,cp ncp Rcp Y0,pit npit Rpit Y0,passive
npassive Rpassive
d S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2 S·sn·cm-2 W·cm2
NiCu 16 - 8.882 0.008702 0.6457 2.664 0.002131 0.7883 369.5 0.001638 0.5710 2474
22 - 8.217 0.003152 0.6947 1.322 0.002105 0.8048 667.7 0.001622 0.5637 5547
28 - 7.715 0.003001 0.7126 1.181 0.001952 0.8161 463.5 0.001608 0.5709 4979
Q235 24 2.910×10-8 30.98 0.0001203 0.8086 16.73 0.001795 0.6088 1015 0.0001753 0.5611 6451
32 2.358×10-8 39.29 0.0002296 0.7512 51.99 0.0008616 0.5572 0.1764 0.0003387 0.4057 3412
Table 3  Fitted results for EIS data measured during stages II and III
Fig.5  XRD pattern of the surface layer of NiCu low alloy steel after immersion for 28 d in the test solution
Fig.6  Sectional view of corrosion products and corresponding EDS and EPMA results of NiCu low alloy steel after the immersion test
Fig.7  XPS analysis of chemical states of Ni (a) and Cu (b) elements in the rust layer of NiCu low alloy steel after immersion for 28 d in the test solution
Fig.8  E-pH diagram for the Fe-Ni-Cu-H2O system at 25 ℃ with [Fe2+] = 10-5 mol/L (The shaded aera shows the fluctuation range of open circuit potential and solution pH in stages II and III)
[1] Wang J, Su R, Chen W M, Guo Y H, Jin Y X, Wen Z J, Liu Y M. Chin J Rock Mech Eng, 2006; 25: 649
(王 驹, 苏 锐, 陈伟明, 郭永海, 金远新, 温志坚, 刘月妙. 岩石力学与工程学报, 2006; 25: 649)
[2] Bennett D G, Gens R. J Nucl Mater, 2008; 379: 1
[3] Nishimura T. J Nucl Mater, 2009; 385: 495
[4] Kursten B, Druyts F, MacDonald D D, Smart N R, Gens R, Wang L, Weetjens E, Govaerts J. Corros Eng Sci Technol, 2011; 46: 91
[5] Taniguchi N, Suzuki H, Kawasaki M, Naito M, Kobayashi M, Takahashi R, Asano H. Corros Eng Sci Technol, 2011; 46: 117
[6] Xia X, Idemitsu K, Arima T, Inagaki Y, Ishidera T, Kurosawa S, Iijima K, Sato H. Appl Clay Sci, 2005; 28: 89
[7] Lu C, Samper J, Fritz B, Clement A, Montenegro L. Phys Chem Earth, 2011; 36: 1661
[8] Neff D, Dillmann P, Bellot-Gurlet L, Beranger G. Corros Sci, 2005; 47: 515
[9] Neff D, Saheb M, Monnier J, Perrin S, Descostes M, L'Hostis V, Crusset D, Millard A, Dillmann P. J Nucl Mater, 2010; 402: 196
[10] Yang J F, Dong J H, Ke W. Acta Metall Sin, 2011; 47: 1321
(阳靖峰, 董俊华, 柯 伟. 金属学报, 2011; 47: 1321)
[11] Taniguchi N, Honda A, Ishikawa H. Mater Res Soc Symp Proc, 1998; 506: 495
[12] Nishimura T, Katayama H, Noda K, Kodama T. Corros Sci, 2000; 42: 1611
[13] Wang Z, Liu J, Wu L, Han R, Sun Y. Corros Sci, 2013; 67: 1
[14] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2011; 47: 145
(曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2011; 47: 145)
[15] Matsushima I,translated by Jing Y K. Low-Alloy Corrosion Resistant Steels: A History of Development, Application and Research. Beijing: Metallurgic Industry Press, 2004: 100
(松岛 岩 著,靳裕康 译. 低合金耐蚀钢—开发、发展及研究. 北京: 冶金工业出版社, 2004: 100)
[16] Kihira H, Kimura M. Corrosion, 2011; 67: 1
[17] Serdar M, Zulj L V, Bjegovic D. Corros Sci, 2013; 69: 149
[18] Mansfeld F, Lin S, Chen Y C, Shih H. J Electrochem Soc, 1988; 135: 906
[19] Bessone J, Mayer C, Juttner K, Lorenz W J. Electrochim Acta, 1983; 28: 171
[20] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 135
(曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 135)
[21] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 54: 244
[22] Kimura M, Kihira H, Ohta N, Hashimoto M, Senuma T. Corros Sci, 2005; 47: 2499
[23] Chen X H, Dong J H, Han E H, Ke W. Mater Lett, 2007; 61: 4050
[24] Nishimura T, Kodama T. Corros Sci, 2003; 45: 1073
[25] Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2011; 53: 4187
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[3] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[4] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] Yunfei LU,Junhua DONG,Wei KE. EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS[J]. 金属学报, 2015, 51(9): 1067-1076.
[6] Xiaolin LI,Zhaodong WANG,Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL[J]. 金属学报, 2015, 51(7): 784-790.
[7] Liang WEI, Xiaolu PANG, Kewei GAO. CORROSION MECHANISM DISCUSSION OF X65 STEEL IN NaCl SOLUTION SATURATED WITH SUPERCRITICAL CO2[J]. 金属学报, 2015, 51(6): 701-712.
[8] WU Xinqiang, TAN Jibo, XU Song, HAN En-Hou, KE Wei. CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL[J]. 金属学报, 2015, 51(3): 298-306.
[9] CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF pH VALUE ON THE CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL-INDUSTRIAL ATMOSPHERES[J]. 金属学报, 2015, 51(2): 191-200.
[10] Pingguang XU,Jiang YIN,Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION[J]. 金属学报, 2015, 51(11): 1297-1305.
[11] CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF SO2 ON CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL- INDUSTRIAL ATMOSPHERE[J]. 金属学报, 2014, 50(7): 802-810.
[12] XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃[J]. 金属学报, 2014, 50(6): 659-666.
[13] FANG Yupei, XIE Zhenjia, SHANG Chengjia. EFFECT OF INDUCTION TEMPERING ON CARBIDE PRECIPITATION BEHAVIOR AND TOUGHNESS OF A 1000 MPa GRADE HIGH STRENGTH LOW ALLOY STEEL[J]. 金属学报, 2014, 50(12): 1413-1420.
[14] WANG Changgang, DONG Junhua, KE Wei, LI Xiaofang. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF COPPER IN THE MIXED SOLUTION OF HCO3-, SO42- AND Cl-[J]. 金属学报, 2013, 49(2): 207-213.
[15] WANG Changgang DONG Junhua KE Wei CHEN Nan LI Xiaofang. RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-[J]. 金属学报, 2012, 48(11): 1365-1373.
No Suggested Reading articles found!