Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1315-1320    DOI: 10.3724/SP.J.1037.2011.00245
论文 Current Issue | Archive | Adv Search |
FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES
ZHOU Dianwu1, LIU Jinshui2, XU Shaohua2, PENG Ping2
1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
2.School of Materials Science and Engineering, Hunan University, Changsha 410082
Cite this article: 

ZHOU Dianwu LIU Jinshui XU Shaohua PENG Ping. FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES. Acta Metall Sin, 2011, 47(10): 1315-1320.

Download:  PDF(650KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract   Structural stabilities, elastic properties and electronic structures of Mg17Al12, Al2Sr and Mg2Sr phases have been determined from first–principle calculations by using CASTEP and DMOL programs based on the density functional theory. The calculated formation heats and cohesive energies indicated that Al2Sr has the strongest alloying ability as well as the highest structural stability. The calculated Gibbs free energy showed that the structural stabilities of Mg17Al12, Al2Sr andMg2Sr change with elevated temperature, when the temperture is above 423 K, Al2Sr is more stable than Mg17Al12phase, and Sr addition to the Mg–Al base alloys can improve the creep properties. The calculated bulk modulus (B), anisotropy values (A), Young’s modulus (E), shear modulus (G) and Poisson ratio (ν) showed that Mg2Sr is ductile, on the contrary, Mg17Al12and Al2Sr are both brittle, and among the three phases Mg2Sr is a phase with the best plasticity. The calculations of the density of states (DOS) and Mulliken electronic populations showed that the reason of Al2Sr having the highest structural stability attributes to Al2Sr phase having the more covalent bonds compared with Mg17Al12 and Mg2Sr phases, while Mg17Al12 phase having more stable structure is the result of co–action of ionicand covalent bonds.
Key words:  magnesium alloy      first–principle calculation      electronic structure      structural stability      elastic property     
Received:  18 April 2011     
Fund: 

Supported by Specialized Research Fund for the Doctoral Program of Higher Education (No.200805321032), Natural Science Foundation of Hunan Province (No.09JJ6079) and Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No.71075003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00245     OR     https://www.ams.org.cn/EN/Y2011/V47/I10/1315

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[2] Luo A, Pekguleryuz M O. J Mater Sci, 1994; 29: 5259

[3] Parvez M A, Medraj M, Essadiqi E, Muntasar A, Denes G. J Alloys Compd, 2005; 402: 170

[4] Chartrand P, Pelton A D. J Phase Equilib, 1994; 5: 591

[5] Aljarrah M, Parvez M A, Li J, Essadiqi E, Medraj M. Sci Technol Adv Mater, 2007; 8: 237

[6] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. J Phys: Condens Matter, 2002; 14: 2717

[7] Marlo M, Milman V. Phys Rev, 2000; 62B: 2899

[8] Vanderbilt D. Phys Rev, 1990; 41B: 7892

[9] Hammer B, Hansen L B, Norkov J K. Phys Rev, 1999; 59B: 7413

[10] Franscis G P, Payne M C. J Phys: Condens Matter, 1990; 2: 4395

[11] Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188

[12] Duan Y H, Sun Y, Peng M J, Guo Z Z. Solid State Sci, 2011; 13: 455

[13] Min X G, Du W W, Xue F, Sun Y S. Chin Sci Bull, 2002; 47: 109

[14] Zhong Y, Sofo J O, Luo A A, Liu Z K. J Alloys Compd, 2006; 421: 172

[15] Alcock C B, Itkin V P. Bull Alloy Phase Diagrams, 1989; 10: 624

[16] Zhou DW, Liu J S, Lou Y Z, Zhang C H. Chin Nonferrous Met, 2008; 18: 118

(周惦武, 刘金水, 卢远志, 张楚惠. 中国有色金属学报, 2008; 18: 118)

[17] King R C, Kleppa O J. Acta Metall Mater, 1964; 12: 87

[18] Aljarrah M, Medraj M. Comp Coup Phase Diagrams Thermochem, 2008; 32: 240

[19] Zubov V I, Tretiakov N P, Teixeira Rabelo J N, Sanchez Ortiz J F. Phys Lett, 1995; 198A: 470

[20] Ishii Y, Fujiwara T. Non–Cryst Solids, 2002; 312–314: 494

[21] Wang N, Yu W Y, Tang B Y, Peng L M, Ding W J. J Phys, 2008; 41D: 195408

[22] Hong S Y, Fu C L. Intermetallics, 1999; 7: 5

[23] Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M. Phys Rev, 1990; 41B: 10311

[24] YuWY, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400

[25] Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[7] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[8] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[10] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[11] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[12] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[13] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[15] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
No Suggested Reading articles found!