Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (10): 1315-1320    DOI: 10.3724/SP.J.1037.2011.00245
论文 Current Issue | Archive | Adv Search |
FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES
ZHOU Dianwu1, LIU Jinshui2, XU Shaohua2, PENG Ping2
1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
2.School of Materials Science and Engineering, Hunan University, Changsha 410082
Download: PDF (650 KB)     
Export: BibTeX | EndNote (RIS)      
Abstract   Structural stabilities, elastic properties and electronic structures of Mg17Al12, Al2Sr and Mg2Sr phases have been determined from first–principle calculations by using CASTEP and DMOL programs based on the density functional theory. The calculated formation heats and cohesive energies indicated that Al2Sr has the strongest alloying ability as well as the highest structural stability. The calculated Gibbs free energy showed that the structural stabilities of Mg17Al12, Al2Sr andMg2Sr change with elevated temperature, when the temperture is above 423 K, Al2Sr is more stable than Mg17Al12phase, and Sr addition to the Mg–Al base alloys can improve the creep properties. The calculated bulk modulus (B), anisotropy values (A), Young’s modulus (E), shear modulus (G) and Poisson ratio (ν) showed that Mg2Sr is ductile, on the contrary, Mg17Al12and Al2Sr are both brittle, and among the three phases Mg2Sr is a phase with the best plasticity. The calculations of the density of states (DOS) and Mulliken electronic populations showed that the reason of Al2Sr having the highest structural stability attributes to Al2Sr phase having the more covalent bonds compared with Mg17Al12 and Mg2Sr phases, while Mg17Al12 phase having more stable structure is the result of co–action of ionicand covalent bonds.
Key wordsmagnesium alloy      first–principle calculation      electronic structure      structural stability      elastic property     
Received: 18 April 2011      Published: 11 October 2011
Fund:

Supported by Specialized Research Fund for the Doctoral Program of Higher Education (No.200805321032), Natural Science Foundation of Hunan Province (No.09JJ6079) and Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No.71075003)

Corresponding Authors: ZHOU Dianwu     E-mail: ZDWe_mail@yahoo.com.cn

Cite this article:

ZHOU Dianwu LIU Jinshui XU Shaohua PENG Ping. FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES. Acta Metall Sin, 2011, 47(10): 1315-1320.

URL:

http://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00245     OR     http://www.ams.org.cn/EN/Y2011/V47/I10/1315

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[2] Luo A, Pekguleryuz M O. J Mater Sci, 1994; 29: 5259
[3] Parvez M A, Medraj M, Essadiqi E, Muntasar A, Denes G. J Alloys Compd, 2005; 402: 170
[4] Chartrand P, Pelton A D. J Phase Equilib, 1994; 5: 591
[5] Aljarrah M, Parvez M A, Li J, Essadiqi E, Medraj M. Sci Technol Adv Mater, 2007; 8: 237
[6] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. J Phys: Condens Matter, 2002; 14: 2717
[7] Marlo M, Milman V. Phys Rev, 2000; 62B: 2899
[8] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[9] Hammer B, Hansen L B, Norkov J K. Phys Rev, 1999; 59B: 7413
[10]Franscis G P, Payne M C. J Phys: Condens Matter, 1990; 2: 4395
[11]Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188
[12]Duan Y H, Sun Y, Peng M J, Guo Z Z. Solid State Sci, 2011; 13: 455
[13]Min X G, Du W W, Xue F, Sun Y S. Chin Sci Bull, 2002; 47: 109
[14]Zhong Y, Sofo J O, Luo A A, Liu Z K. J Alloys Compd, 2006; 421: 172
[15]Alcock C B, Itkin V P. Bull Alloy Phase Diagrams, 1989; 10: 624
[16]Zhou DW, Liu J S, Lou Y Z, Zhang C H. Chin Nonferrous Met, 2008; 18: 118
(周惦武, 刘金水, 卢远志, 张楚惠. 中国有色金属学报, 2008; 18: 118)
[17]King R C, Kleppa O J. Acta Metall Mater, 1964; 12: 87
[18]Aljarrah M, Medraj M. Comp Coup Phase Diagrams Thermochem, 2008; 32: 240
[19]Zubov V I, Tretiakov N P, Teixeira Rabelo J N, Sanchez Ortiz J F. Phys Lett, 1995; 198A: 470
[20]Ishii Y, Fujiwara T. Non-Cryst Solids, 2002; 312-314: 494
[21]Wang N, Yu W Y, Tang B Y, Peng L M, Ding W J. J Phys, 2008; 41D: 195408
[22]Hong S Y, Fu C L. Intermetallics, 1999; 7: 5
[23]Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M. Phys Rev, 1990; 41B: 10311
[24]YuWY, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400
[25]Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[1] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
[2] Yaqiong YAN,Jinru LUO,Jishan ZHANG,Linzhong ZHUANG. Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling[J]. 金属学报, 2017, 53(1): 107-113.
[3] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
[4] Feng WANG,Dezhi MA,Zhi WANG,Pingli MAO,Zheng LIU. MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS[J]. 金属学报, 2016, 52(9): 1115-1122.
[5] Yanqiu WANG,Kun WU,Fuhui WANG. EFFECTS OF SECOND PHASES ON MICROARC OXIDATION PROCESS OF MAGNESIUM BASE MATERIALS[J]. 金属学报, 2016, 52(6): 689-697.
[6] Wenhui WANG,Di WU,Rongshi CHEN,Changsheng LOU. EFFECTS OF HIGH TEMPERATURE SHORT TIMEAGEING TREATMENT ON THE MICROSTRUC-TURES AND MECHANICAL PROPERTIES OFMg-3Nd-1Zn ALLOY[J]. 金属学报, 2016, 52(5): 567-574.
[7] Jinbao LIN,Weijie REN,Xinyi WANG. RESEARCH ON THE TENSION-COMPRESSION ASYM-METRY OF AS-EXTRUDED ZK60 MAGNESIUM ALLOYS AT ROOM TEMPERATURE[J]. 金属学报, 2016, 52(3): 264-270.
[8] Kaiwen WEI,Zemin WANG,Xiaoyan ZENG. ELEMENT LOSS OF AZ91D MAGNESIUM ALLOY DURING SELECTIVE LASER MELTING PROCESS[J]. 金属学报, 2016, 52(2): 184-190.
[9] Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS[J]. 金属学报, 2015, 51(6): 668-676.
[10] Shaojun LIU, Guangyu YANG, Wanqi JIE. SELECTION OF THE SOLIDIFICATION PATH OF Mg-Zn-Gd TERNARY CASTING ALLOY[J]. 金属学报, 2015, 51(5): 580-586.
[11] Tao JIN,Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU. RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2015, 51(10): 1153-1162.
[12] ZHANG Xiaobo, XUE Yajun, WANG Zhangzhong, HE Xiancong, WANG Qiang. MICROSTRUCTURE, MECHANICAL AND CORROSION PROPERTIES OF Mg-(4-x)Nd-xGd-Sr-Zn-Zr BIOMAGNESIUM ALLOYS[J]. 金属学报, 2014, 50(8): 979-988.
[13] ZHANG Siqian , WU Wei , CHEN Lili , CHE Xin , CHEN Lijia . INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY[J]. 金属学报, 2014, 50(6): 700-706.
[14] CAI Yulong, FU Shihua, WANG Yuhui, TIAN Chenggang, GAO Yue, CHENG Teng, ZHANG Qingchuan. SERRATED YIELDING OF 5456 ALUMINIUM MAGNE- SIUM ALLOY BASED ON THREE DIMENSIONAL DIGITAL IMAGE CORRELATION[J]. 金属学报, 2014, 50(12): 1491-1497.
[15] LI Haoyu, BAI Yuanyuan, ZHANG Haitao, WU Xin, ZHANG Zhiqiang, LE Qichi. EFFECT OF Mn ON HOT CRACKING TENDENCY OF Mg-6.5Zn ALLOYS[J]. 金属学报, 2014, 50(10): 1237-1243.