Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 7-16    DOI: 10.3724/SP.J.1037.2010.00313
论文 Current Issue | Archive | Adv Search |
MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY
HAN Zhiqiang1),  LI Jinxi1),  YANG Wen1),  ZHAO Haidong2),  LIU Baicheng1,3)
1) Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 
3) State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University,  Beijing 100084
Cite this article: 

HAN Zhiqiang LI Jinxi YANG Wen ZHAO Haidong LIU Baicheng. MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY. Acta Metall Sin, 2011, 47(1): 7-16.

Download:  PDF(1384KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A mathematical model for simulating the microporosity in squeeze casting of aluminum alloy has been developed, in which the heat transfer, solidification shrinkage, feeding flow, pressure transfer, and hydrogen conservation were taken into account. The shrinkage induced flow and the pressure drop in the mushy zone were calculated by solving continuity and momentum equations. A mechanical model was solved for obtaining the pressure transferred into the central area of the casting. By coupling the pressure drop with the pressure transferred into the central area, the pressure distribution in the mushy zone was calculated. Based on the hydrogen conservation equation, the microporosity volume fraction was calculated by referring to the pressure value in the mushy zone. The squeeze casting processes of aluminum alloy under different process conditions were simulated and the simulation results were compared with experimental results. It was shown that the simulation results agree well with the experimental results, and the increases in applied pressure and mould temperature tend to reduce the microporosity in the castings.
Key words:  aluminum alloy      squeeze casting      microporosity      modeling and simulation     
Received:  30 June 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50675113 and 50875143)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00313     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/7

[1] Ghomashchi M R, Vikhrov A. J Mater Process Technol, 2000; 101: 1

[2] Qi P X. Spec Cast Nonferrous Alloys, 1998; 18(4): 32

(齐丕骧. 特种铸造及有色合金, 1998; 18(4): 32)

[3] Luo S J, Chen B G, Qi P X. Liquid Forging and Squeeze Casting Technology. Beijing: Chemical Industry Press, 2007: 1

(罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术. 北京: 化学工业出版社, 2007: 1)

[4] Major J F. AFS Trans, 1998; 105: 901

[5] Samuel A M, Samuel F H. Metall Mater Trans, 1995; 26A: 2359

[6] Lee C D. Mater Sci Eng, 2007; A464: 249

[7] Lee P D, Chirazi A, See D. J Light Met, 2001; (1): 15

[8] Stefanescu D M. Int J Cast Met Res, 2005; 18(3): 129

[9] Gui Z L, Dai T, Zhu M F. Spec Cast Nonferrous Alloys, 2007; 27: 766

(桂仲林, 戴挺, 朱鸣芳. 特种铸造及有色合金, 2007; 27: 766)

[10] Kubo K, Pehlke R D. Metall Trans, 1985; 16B: 359

[11] Poirier D R, Yeum K, Maples A L. Metall Trans, 1987; 18A: 1979

[12] Shivkumar S, Apelian D, Zou J. AFS Trans, 1990; 98: 897

[13] Sabau A S, Viswanathan S. Metall Mater Trans, 2002; 33B: 243

[14] Pequet C H, Gremaud M, Rappaz M. Metall Mater Trans, 2002; 33A: 2095

[15] Zhao H D, Wu C Z, Li Y Y, Ohnaka I. Acta Metall Sin, 2008; 44: 1340

(赵海东, 吴朝忠, 李元元, 大中逸雄. 金属学报, 2008; 44: 1340)

[16] Atwood R C, Sridhar S, Zhang W, Lee P D. Acta Mater, 2000; 48: 405

[17] Lee P D, Chirazi A, Atwood R C, Wang W. Mater Sci Eng, 2004; A365: 57

[18] Wang J S, Lee P D. Int J Cast Met Res, 2007; 20(3): 151

[19] Backer G, Wang Q G. Metall Mater Trans, 2007; 38B: 533

[20] Carlson K D, Lin Z P, Beckermann C. Metall Mater Trans, 2007; 38B: 541

[21] Han Z Q, Zhu W, Liu B C. Acta Metall Sin, 2009; 45: 356

(韩志强, 朱维, 柳百成. 金属学报, 2009 45: 356)

[22] Zhu W, Han Z Q, Liu B C. Acta Metall Sin, 2009 45: 363

(朱维, 韩志强, 柳百成. 金属学报, 2009; 45: 363)

[23] Anyalebechi P N. Acta Metall, 1995; 33: 1209

[24] Lewis R W, Han Z Q, Gethin D T. C R Mec, 2007: 335: 287

[25] Yang W, Li J X, Han Z Q, Zhao H D, Liu B C. Spec Cast Nonferrous Alloys, 2010; 30: 54

(杨文, 李金玺, 韩志强, 赵海东, 柳百成. 特种铸造及有色合金, 2010; 30: 54)
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[9] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[10] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[11] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[12] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[13] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[14] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
[15] LI Jichen, FENG Di, XIA Weisheng, GUO Weimin, WANG Guoying. The Non-Isothermal Double Ageing Behaviour of 7055 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1495-1506.
No Suggested Reading articles found!