Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (6): 683-691    DOI: 10.11900/0412.1961.2018.00517
Current Issue | Archive | Adv Search |
Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites
Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
Cite this article: 

Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites. Acta Metall Sin, 2019, 55(6): 683-691.

Download:  HTML  PDF(5830KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, nanomaterials reinforced light metal matrix composites (LMMCs) have been researched widely, due to the enhancement in strength and ductility at room temperature, good wear resistance, excellent high temperature performance and structural-functional integration. However, there remain many challenges in developing high-performance nanomaterials reinforced LMMCs to date. The challenges mainly concentrate in the attainment of homogeneous dispersion or a controlled inhomogeneous microstructure of nanomaterials reinforcements, and the formation of the strong interfacial bonding. In the present review, therefore, current developments in fabrication, multi-scale hybrid reinforcement, novel architecture design and new processing method have been addressed. Moreover, further research interests related to the designs of nanomaterials reinforced LMMCs exhibiting high strength and plasticity, optimal architecture design and structural-functional integration have been proposed.

Key words:  nanomaterial reinforcement      light metal matrix composite      architecture design      hybrid reinforcement      structural-functional integration     
Received:  16 November 2018     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(No.2016YFE0115300);National Natural Science Foundation of China(No.51625402)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00517     OR     https://www.ams.org.cn/EN/Y2019/V55/I6/683

Fig.1  Schematic of the fabrication procedure for SiC/Mg-8Al-1Sn nanomaterials reinforced light metal matrix composites (LMMCs) powers by the combination of solvent-assistant dispersion and mechanical ball milling

Architecture

Material

(volume fraction / %)

Processing

E

GPa

UTS

MPa

YS

MPa

δ

%

Ref.

Homogeneous0.5SiC/Mg-8Al-1SnPM+hot extrusion-3812398.3[8]
Mg-8Al-1Sn--3181754.5[8]
0.8SiC/2014AlPM+hot extrusion73.55733789.0[10]
2014AlPM+hot extrusion71.651331012.5[10]
5Al2O3/7075AlMechanical alloying-443-2.1[11]
3CNT/AlFPM+HEBM91.0406-8.8[12]
AlFPM70.6245-15.8[12]
1.5CNT/Al-Zn-Mg-CuFPM-SSBM78.06986954.4[13]
(8.15TiB+1.25TiC+0.59La2O3)/TiIn situ synthesized129.51298.51170.84.2[14]
TiIn situ synthesized112.81051.1934.310.2[14]
(1.2TiC+2.5TiB+1.3Nd2O3)/TiIn situ synthesized-1150-1.0[15]
Laminated5TiBw/TiReaction hot pressing-61749724.5[16]
1.5RGO/AlFPM87302-5.3[17]
3D network(5TiB+5TiC)/Ti64Reaction hot pressing-126711536.1[18]
Ti64Reaction hot pressing-94482313.0[18]
Two-scale network

(4Ti5Si3+3.4TiBw)/Ti64

Reaction hot pressing

-

1180

1050

5.0

[19]

Table 1  Tensile properties of different nanomaterials reinforced LMMCs[8,10,11,12,13,14,15,16,17,18,19]
Fig.2  Typical FESEM images of primary Mg2Si in Al-20%Mg2Si (mass fraction) alloys
Fig.3  Schematics of nanomaterials reinforced LMMCs with different architecture designs
Fig.4  Schematic of the fabrication of RGO/Al nanocomposites with a bioinspired nanolaminated structure by flack power metallurgy (GO—graphene oxide)
[1] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater. Sci. Eng., 2000, R29: 49
[2] Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
[3] Watanabe Y, Inaguma Y, Sato H, et al. A Novel fabrication method for functionally graded materials under centrifugal force: The Centrifugal mixed-powder method [J]. Materials, 2009, 2: 2510
[4] Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Mater. Chem. Phys., 2015, 154: 107
[5] Wu H, Leng J F, Teng X Y, et al. Strain partitioning behavior of in situ Ti5Si3/TiAl composites [J]. J. Alloys Compd., 2018, 744: 182
[6] Fan G L, Huang H Y, Tan Z Q, et al. Grain refinement and superplastic behavior of carbon nanotube reinforced aluminum alloy composite processed by cold rolling [J]. Mater. Sci. Eng., 2017, A708: 537
[7] Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? [J]. Prog. Mater. Sci., 2015, 71: 93
[8] Li C P, Wang Z G, Wang H Y, et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion [J]. J. Mater. Eng. Perform., 2016, 25: 5049
[9] Wang Z G, Li C P, Wang H Y, et al. Aging behavior of nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Mater. Sci. Technol., 2016, 32: 1008
[10] Wang Z G, Li C P, Wang H Y, et al. Effect of nano-SiC content on mechanical properties of SiC/2014Al composites fabricated by powder metallurgy combined with hot extrusion [J]. Powder Metall., 2016, 59: 236
[11] Mobasherpour I, Tofigh A A, Ebrahimi M. Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying [J]. Mater. Chem. Phys., 2013, 138: 535
[12] Fan G L, Jiang Y, Tan Z Q, et al. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy [J]. Carbon, 2018, 130: 333
[13] Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying [J]. Composites, 2018, 111A: 1
[14] Yang Z F, Lu W J, Zhao L, et al. Microstructure and mechanical property of in situ synthesized multiple-reinforced (TiB+TiC+La2O3)/Ti composites [J]. J. Alloys Compd., 2008, 455: 210
[15] Yang Z F, Lu W J, Xu D, et al. In situ synthesis of hybrid and multiple-dimensioned titanium matrix composites [J]. J. Alloys Compd., 2006, 419: 76
[16] Liu B X, Huang L J, Geng L, et al. Fracture behaviors and microstructural failure mechanisms of laminated Ti-TiBw/Ti composites [J]. Mater. Sci. Eng., 2014, A611: 290
[17] Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077
[18] Huang L Q, Wang L H, Qian M, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires [J]. Scr. Mater., 2017, 141: 133
[19] Jiao Y, Huang L J, An Q, et al. Effects of Ti5Si3 characteristics adjustment on microstructure and tensile properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites with two-scale network architecture [J]. Mater. Sci. Eng., 2016, A673: 595
[20] Nampoothiri J, Harini R S, Nayak S K, et al. Post in-situ reaction ultrasonic treatment for generation of Al-4.4Cu/TiB2 nanocomposite: A route to enhance the strength of metal matrix nanocomposites [J]. J. Alloys Compd., 2016, 683: 370
[21] Xiao P, Gao Y M, Yang C C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles [J]. Mater. Sci. Eng., 2018, A710: 251
[22] Song M S, Zhang M X, Zhang S G, et al. In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting [J]. Mater. Sci. Eng., 2008, A473: 166
[23] Zhou D S, Qiu F, Jiang Q C. The nano-sized TiC particle reinforced Al-Cu matrix composite with superior tensile ductility [J]. Mater. Sci. Eng., 2015, A622: 189
[24] Wang H Y, Yu H C, Li C, et al. Morphology evolution of primary Mg2Si in Al-20Mg2Si-0.1Ca alloys prepared with various solidification cooling rates [J]. CrystEngComm, 2017, 19: 1680
[25] Wang H Y, Zhu J N, Li J H, et al. Refinement and modification of primary Mg2Si in an Al-20Mg2Si alloy by a combined addition of yttrium and antimony [J]. CrystEngComm, 2017, 19: 6365
[26] Razaghian A, Bahrami A, Emamy M. The influence of Li on the tensile properties of extruded in situ Al-15%Mg2Si composite [J]. Mater. Sci. Eng., 2012, A532: 346
[27] Bian L P, Liang W, Xie G Y, et al. Enhanced ductility in an Al-Mg2Si in situ composite processed by ECAP using a modified BC route [J]. Mater. Sci. Eng., 2011, A528: 3463
[28] Li Z D, Li C, Liu Y C, et al. Effect of heat treatment on microstructure and mechanical property of Al-10%Mg2Si alloy [J]. J. Alloys Compd., 2016, 663: 16
[29] Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
[29] (赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1)
[30] Gao X, Yue H Y, Guo E J, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites [J]. Mater. Des., 2016, 94: 54
[31] Saba F, Sajjadi S A, Haddad-Sabzevar M, et al. Exploring the reinforcing effect of TiC and CNT in dual-reinforced Al-matrix composites [J]. Diam. Relat. Mater., 2018, 89: 180
[32] Wang Y, Shen P, Guo R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration [J]. Ceram. Int., 2017, 43: 3831
[33] Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412
[34] Wu H, Fan G H, Huang M, et al. Fracture behavior and strain evolution of laminated composites [J]. Compos. Struct., 2017, 163: 123
[35] Launey M E, Munch E, Alsem D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites [J]. J. Roy. Soc. Interface, 2010, 7: 741
[36] Zhang H, Shen P, Shaga A, et al. Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template [J]. Mater. Lett., 2016, 183: 299
[37] Yang F, Kong F T, Chen Y Y, et al. Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite [J]. J. Alloys Compd., 2010, 496: 462
[38] Huang L J, Geng L, Wang B, et al. Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with novel network microstructure [J]. Mater. Des., 2013, 45: 532
[39] Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
[39] (王慧远, 张 行, 徐新宇等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618)
[40] Jamian S, Watanabe Y, Sato H. Formation of compositional gradient in Al/SiC FGMs fabricated under huge centrifugal forces using solid-particle and mixed-powder methods [J]. Ceram. Int., 2019, 45: 9444
[41] Tammas-Williams S, Todd I. Design for additive manufacturing with site-specific properties in metals and alloys [J]. Scr. Mater., 2017, 135: 105
[42] Wong J C, Paramsothy M, Gupta M. Using Mg and Mg-nanoAl2O3 concentric alternating macro-ring material design to enhance the properties of magnesium [J]. Compos. Sci. Technol., 2009, 69: 438
[43] Feng S W, Guo Q, Li Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars [J]. Acta Mater., 2017, 125: 98
[1] . Microstructure and Mechanical Properties of As-cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 金属学报, 0, (): 0-0.
[2] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] . Hot Deformation Behavior of Ti30Ni50Hf20 High Temperature Shape Memory Alloy[J]. 金属学报, 0, (): 0-0.
[6] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] . Research Progress on Additive Manufacturing TiAl Alloy[J]. 金属学报, 0, (): 0-0.
[10] . Evolution of Macrosegregation During Three-Stage Vacuum Arc Remelting of Titanium Alloys[J]. 金属学报, 0, (): 0-0.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[13] . Effect of powder particle size on Forming of shrouded impeller[J]. 金属学报, 0, (): 0-0.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!